PARTNER
검증된 파트너 제휴사 자료

나이브 베이지안 분류기를 이용한 선에코 탐지 방법에 대한 연구 (A Study of Line-shaped Echo Detection Method using Naive Bayesian Classifier)

6 페이지
기타파일
최초등록일 2025.05.23 최종저작일 2014.08
6P 미리보기
나이브 베이지안 분류기를 이용한 선에코 탐지 방법에 대한 연구
  • 미리보기

    서지정보

    · 발행기관 : 한국지능시스템학회
    · 수록지 정보 : 한국지능시스템학회 논문지 / 24권 / 4호 / 360 ~ 365페이지
    · 저자명 : 이한수, 김성신

    초록

    기상 레이더, 인공위성, 라디오존데 등 날씨 예보를 수행하기 위해 많은 종류의 첨단 장비들이 사용되고 있다. 이들 중에서 지상에 설치된 기상 레이더는 넓은 탐지영역, 높은 시간 및 공간 분해능 등과 같은 많은 장점을 가지고 있기 때문에 기상 예보 과정에서 필수적인 장비이다. 이러한 기상 레이더 데이터의 내부에는 기상현상 이외에도 여러 가지 외부 요인에 의해 발생하는 비기상현상이 관측되는데, 이는 기상 예보의 정확도를 감소시키는 원인이 된다. 본 논문에서는 기상 레이더 데이터를 이용한 연구를 통하여 비기상현상이 레이더에 관측되어 에코 형태로 나타난 것들 중에서 선 모양으로 발생하는 비기상에코를 제거하는 방법을 제안한다. 원시 레이더 데이터에서 선에코를 구분하여 그 특성을 추출한 후, 이들을 바탕으로 데이터 페어를 구성하여 나이브 베이지안 분류기를 학습시켰다. 그리고 학습된 나이브 베이지안 분류기를 선에코와 기상에코가 혼재된 사례에 적용하였다. 실제 사례를 바탕으로 한 실험을 통해서 제안한 나이브 베이지안 분류기가 효과적으로 선에코를 식별할 수 있음을 확인하였다.

    영어초록

    There are many types of advanced devices for weather prediction process such as weather radar, satellite, radiosonde, and other weather observation devices. Among them, the weather radar is an essential device for weather forecasting because the radar has many advantages like wide observation area, high spatial and time resolution, and so on. In order to analyze the weather radar observation result, we should know the inside structure and data. Some non-precipitation echoes exist inside of the observed radar data. And these echoes affect decreased accuracy of weather forecasting. Therefore, this paper suggests a method that could remove line-shaped non-precipitation echo from raw radar data. The line-shaped echoes are distinguished from the raw radar data and extracted their own features. These extracted data pairs are used as learning data for naive bayesian classifier. After the learning process, the constructed naive bayesian classifier is applied to real case that includes not only line-shaped echo but also other precipitation echoes. From the experiments, we confirm that the conclusion that suggested naive bayesian classifier could distinguish line-shaped echo effectively.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국지능시스템학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 02일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
7:44 오후