• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

이차계획법에 기반한 소파 이동 문제의 상한선 개선 (Improving Upper Bound for the Moving Sofa Problem Based on Quadratic Programming)

13 페이지
기타파일
최초등록일 2025.05.23 최종저작일 2024.04
13P 미리보기
이차계획법에 기반한 소파 이동 문제의 상한선 개선
  • 미리보기

    서지정보

    · 발행기관 : 한국과학영재교육학회
    · 수록지 정보 : 과학영재교육 / 16권 / 1호 / 131 ~ 143페이지
    · 저자명 : 윤예준, 한준희, 윤상현

    초록

    소파 이동(moving sofa) 문제는 직각의 모서리를 끼고 있는 폭이 1인 복도를 통과할 수 있는 최대 단면적 소파를 찾는 이산기하 분야의 문제로, 1966년 Moser에 의해 제시된 이후 아직 미해결 문제로 남아 있다. 현재까지 알려진 최대 단면적의 최대 하한은 1992년 Gerver에 의해 발견된 2.2195...이고 최소 상한은 2018년 Kallus & Romik에 의해 증명된 2.37이다. 최소 상한 2.37이 다소 느슨한 것으로 보이는 반면에 최대 하한 2.2195...을 향상할 여지가 작다는 실험적 근거가 제시되었는데, 본 연구에서는 이 점에 주목하여 상한을 Gerver의 최대 하한에 좀 더 근접하도록 낮추었다. 이를 위해 기하학적 분기 한정법(geometric branch-andbound)과 이차계획법(quadratic programming)에 기반한 최적화 알고리즘을 구성하고, 알고리즘의 효율적 탐색을 위해 다양한 기하학적 성질을 증명하였다. 약한 기하학적 가정하에서, 제안한 최적화 알고리즘을 이용하여 개선된 상한 2.3361을 Kallus & Romik에 비해 훨씬 짧은 계산시간으로 얻었다.

    영어초록

    The moving sofa problem is a problem in discrete geometry that involves finding a shape with the maximum area that can pass through a right-angled corner in a hallway with unit width, and has remained an open problem since it was posed by Moser in 1966. The largest lower bound on the maximum area known to date is 2.2195..., found by Gerver in 1992, and the smallest upper bound is 2.37, proved by Kallus and Romik in 2018. While the minimum upper bound of 2.37 appears to be somewhat loose, experimental evidence suggests that there is little room for improvement in the largest lower bound of 2.2195.... In this study, we aim to lower the upper bound to be closer to Gerver’s maximum lower bound. For this purpose, we construct an optimization algorithm based on geometric branch-and-bound and quadratic programming, and prove various geometric properties for efficient search of the algorithm. Under a reasonable geometric assumption, the proposed optimization algorithm obtains an improved upper bound of 2.3361 with much shorter computation time than Kallus and Romik.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“과학영재교육”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • EasyAI 무료체험
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 10월 11일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
3:43 오전