• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

시계열 데이터 기반의 대칭-불변 윤곽선 이미지 매칭 (Symmetric-Invariant Boundary Image Matching Based on Time-Series Data)

8 페이지
기타파일
최초등록일 2025.05.23 최종저작일 2015.10
8P 미리보기
시계열 데이터 기반의 대칭-불변 윤곽선 이미지 매칭
  • 미리보기

    서지정보

    · 발행기관 : 한국정보처리학회
    · 수록지 정보 : 정보처리학회 논문지 / 4권 / 10호 / 431 ~ 438페이지
    · 저자명 : 이상훈, 문양세, 방준상, 문성우

    초록

    본 논문에서는 대칭 변환을 지원하는 윤곽선 이미지 매칭 문제를 다룬다. 이미지 매칭에서 이미지의 대칭 변환을 지원하는 것은 직관적이고정확한 매칭을 위한 매우 중요한 요소이다. 그러나 기존 이미지 매칭에서는 이미지의 회전 변환만 고려하였을 뿐 대칭 변환은 고려하지 않았다. 본 논문에서는 기존 회전-불변 윤곽선 이미지 매칭에 대칭 변환까지 지원하는 대칭-불변 윤곽선 이미지 매칭을 제안한다. 이를 위해, 먼저이미지 대칭의 개념을 정의하고, 어떠한 대칭각을 사용하더라도 회전-불변 매칭의 결과는 동일함을 정형적으로 증명한다. 또한, 대칭 변환을 위해 이미지 윤곽선으로부터 대칭 시계열을 효율적으로 추출하는 방법을 제안한다. 그런 다음, 이미지를 대칭하여 생성한 대칭 시계열과 원본 이미지 시계열을 직접 대칭하여 생성한 대칭 시계열을 사용한 회전-불변 매칭 결과가 동일함을 정형적으로 증명한다. 실험 결과, 제안하는 대칭- 불변 윤곽선 이미지 매칭은 회전 변환만을 지원하는 기존 이미지 매칭에 비해 보다 정확하고 직관적인 결과를 도출하는 것으로 나타났다. 이같은 결과는 대칭-불변 윤곽선 이미지 매칭이 이미지의 대칭 변환 문제를 시계열 도메인에서 해결한 우수한 해결책임을 의미한다

    영어초록

    In this paper we address the symmetric-invariant problem in boundary image matching. Supporting symmetric transformation is an important factor in boundary image matching to get more intuitive and more accurate matching results. However, the previous boundary image matching handled rotation transformation only without considering symmetric transformation. In this paper, we propose symmetric-invariant boundary image matching which supports the symmetric transformation as well as the rotation transformation. For this, we define the concept of image symmetry and formally prove that rotation-invariant matching of using a symmetric image always returns the same result for every symmetric angle. For efficient symmetric transformation, we also present how to efficiently extract the symmetric time-series from an image boundary. Finally, we formally prove that our symmetric-invariant matching produces the same result for two approaches: one is using the time-series extracted from the symmetric image; another is using the time-series directly obtained from the original image time-series by symmetric transformation. Experimental results show that the proposed symmetric-invariant boundary image matching obtains more accurate and intuitive results than the previous rotation-invariant boundary image matching. These results mean that our symmetric-invariant solution is an excellent approach that solves the image symmetry problem in time-series domain.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 05일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
8:24 오후