• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

HOG기반 RBFNN을 이용한 상반신 검출 시스템의설계 (Design of Upper Body Detection System Using RBFNN Based on HOG Algorithm)

8 페이지
기타파일
최초등록일 2025.05.21 최종저작일 2016.08
8P 미리보기
HOG기반 RBFNN을 이용한 상반신 검출 시스템의설계
  • 미리보기

    서지정보

    · 발행기관 : 한국지능시스템학회
    · 수록지 정보 : 한국지능시스템학회 논문지 / 26권 / 4호 / 259 ~ 266페이지
    · 저자명 : 김선환, 오성권, 김진율

    초록

    최근 감시와 보안을 목적으로 활발하게 CCTV가 설치되고 있고, 지능형 감시시스템은 영상에서 객체의 검출 및 감시 등으로광범위하게 응용되고 있다. 본 연구에서는 지능형 영상 감시 시스템에서 HOG 특징과 FCM 기반의 RBFNN 분류기를 이용한상반신 검출 방법을 제안한다. HOG는 보행자를 검출하기 위해 기존에 제안되었던 특징으로 본 논문에서는 이를 사용해상반신의 고유한 기울기를 학습하였다. HOG 특징은 입력 이미지의 크기에 비례하는 고차원의 특징 벡터로 기울기를표현하기 때문에 RBFNN분류기의 입력데이터로 쓰려면 차원 축소가 필요하다. 이를 위해 PCA 알고리즘을 RBFNN 분류기앞에 적용하여 HOG 특징의 차원을 저차원으로 축소하였다. 컴퓨터 실험에서는 미리 분류된 상반신 영상과 사람이 아닌영상을 통해 분류기를 훈련시킨 후 테스트 영상과 동영상을 이용하여 제안된 상반신 검출 방법의 성능을 평가하였다

    영어초록

    Recently, CCTV cameras are emplaced actively to reinforce security and intelligent surveillance systems have been under development for detecting and monitoring of the objects in the video. In this study, we propose a method for detection of upper body in intelligent surveillance system using FCM-based RBFNN classifier realized with the aid of HOG features. Firstly, HOG features that have been originally proposed to detect the pedestrian are adopted to train the unique gradient features about upper body.
    However, HOG features typically exhibit a very high dimension of which is proportional to the size of the input image, it is necessary to reduce the dimension of inputs of the RBFNN classifier. Thus the well-known PCA algorithm is applied prior to the RBFNN classification step. In the computer simulation experiments, the RBFNN classifier was trained using pre-classified upper body images and non-person images and then the performance of the proposed classifier for upper body detection is evaluated by using test images and video sequences

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국지능시스템학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 프레시홍 - 추석
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 25일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
10:23 오전