• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

다중 GPU 기반의 고속 삼차원 역전사 기법 (Fast Multi-GPU based 3D Backprojection Method)

한국학술지에서 제공하는 국내 최고 수준의 학술 데이터베이스를 통해 다양한 논문과 학술지 정보를 만나보세요.
10 페이지
기타파일
최초등록일 2025.05.20 최종저작일 2009.02
10P 미리보기
다중 GPU 기반의 고속 삼차원 역전사 기법
  • 미리보기

    서지정보

    · 발행기관 : 한국멀티미디어학회
    · 수록지 정보 : 멀티미디어학회논문지 / 12권 / 2호 / 209 ~ 218페이지
    · 저자명 : 이병훈, 이호, 신영길, 계희원

    초록

    삼차원 역전사(3D backprojection) 기법은 수백 장의 이차원 투영영상을 가지고 대상물의 공간적인 위치 파악이 가능한 단층 영상(tomography)을 생성하기 위해 사용되는 재구성 기법이다. 재구성 기법은 단층 영상을 구성하는 결과볼륨의 모든 화소로부터 각 화소 위치에 기여할 값을 이차원 투영영상에서 계산하여 얻어오기 때문에 결과볼륨이 커지거나 투영영상의 수가 증가하게 되면 전체 계산량은 상당히 증가하게 된다. 이러한 문제를 해결하기 위해 최근 범용 그래픽스 하드웨어(graphics processing unit: GPU) 기반의 고속 삼차원 재구성 기법이 연구되었으며 상당한 성능 향상을 가져왔다. 본 논문에서는 기존의 단일 GPU 기반의 삼차원 재구성 기법을 다중 GPU 기반으로 확장할 때 입력되는 투영영상 크기와 결과볼륨의 크기에 따라서 효율적으로 동작될 수 있는 두 가지 병렬 처리 구현 기법에 대해 제시하고 비교 분석한다. 제안한 병렬 처리 구현 기법은 투영영상을 입력 데이터로 간주하여 각 GPU가 모든 투영영상에 대해서 출력 데이터인 결과볼륨을 분할하여 생성하는 결과볼륨 분할생성 기법과 각 GPU가 투영영상을 분산적재하여 할당 받은 입력 데이터에 대한 결과볼륨을 출력한 후 각각의 출력 결과를 CPU에서 합하는 투영영상 분산적재 기법이다. 실험 결과, 결과볼륨의 크기가 GPU에 모두 할당할 수 있는 크기인 경우에는 결과볼륨 분할생성 기법이 더 좋은 성능을 보였고, 결과볼륨의 크기가 GPU 메모리보다 큰 경우에는 투영영상 분산적재 기법이 더 유리하였다.

    영어초록

    3D backprojection is a kind of reconstruction algorithm to generate volume data consisting of tomographic images, which provides spatial information of the original 3D data from hundreds of 2D projections. The computational time of backprojection increases in proportion to the size of volume data and the number of projection images since the value of every voxel in volume data is calculated by considering corresponding pixels from hundreds of projections. For the reduction of computational time, fast GPU based 3D backprojection methods have been studied recently and the performance of them has been improved significantly. This paper presents two multiple GPU based methods to maximize the parallelism of GPU and compares the efficiencies of two methods by considering both the number of projections and the size of volume data. The first method is to generate partial volume data independently for all projections after allocating a half size of volume data on each GPU. The second method is to acquire the entire volume data by merging the incomplete volume data of each GPU on CPU. The in-complete volume data is generated using the half size of projections after allocating the full size of volume data on each GPU. In experimental results, the first method performed better than the second method when the entire volume data can be allocated on GPU. Otherwise, the second method was efficient than the first one.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“멀티미디어학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 31일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
5:16 오후