• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

통계 분석을 통한 산사태 토석류 전이규준 모델 (A Statistical Mobilization Criterion for Debris-flow)

한국학술지에서 제공하는 국내 최고 수준의 학술 데이터베이스를 통해 다양한 논문과 학술지 정보를 만나보세요.
11 페이지
기타파일
최초등록일 2025.05.19 최종저작일 2015.06
11P 미리보기
통계 분석을 통한 산사태 토석류 전이규준 모델
  • 미리보기

    서지정보

    · 발행기관 : 한국지반공학회
    · 수록지 정보 : 한국지반공학회논문집 / 31권 / 6호 / 59 ~ 69페이지
    · 저자명 : 윤석, 이승래, 강신항, 박도원

    초록

    최근 들어 집중호우로 인한 산사태 및 토석류 피해가 종종 발생하고 있다. 이에 따라 산사태 재해 예측에 관한연구 중 산사태 민감도 분석과 토석류 위험도 분석 관련 연구는 활발하게 진행되어 왔지만, 사면 지역에 적용하기적합한 전이 분석 관련 연구는 부족한 실정이다. 본 연구에서는 판별분석과 로지스틱 회귀 분석과 같은 통계적 방법을이용하여 실제 토석류가 발생했던 지역에서 추출한 지형학적 인자, 지질학적 인자 등을 토대로 토석류 전이규준을제시하였다. 10개의 지형학적 및 지질학적 인자가 독립변수로 사용되었으며 실제 466개소(비전이: 228개소, 전이:238개소)의 토석류 비전이 및 전이 데이터가 수집되었다. 우선, Fisher의 판별 분석이 수행되었으며, 수행 결과 실제경우와 91.6%의 분류 정확도를 보였다. 하지만 전이와 비전이 두 그룹간의 공분산 동질성이 만족되지 않았으며 또한독립변수들이 정규분포를 보이지도 않았다. 두 번째로 이항 로지스틱 회귀분석이 수행되었으며, 분석 결과 92.3%의 분류 정확도를 나타냈으며 모든 통계적 조건들도 유의하게 나타났다. 따라서 이항 로지스틱 회귀 분석을 이용한 전이규준은 토석류 재해 발생 여부를 예측하는데 효과적으로 사용될 수 있을 것으로 판단된다.

    영어초록

    Recently, landslide and debris-flow disasters caused by severe rain storms have frequently occurred. Many researchesrelated to landslide susceptibility analysis and debris-flow hazard analysis have been conducted, but there are not manyresearches related to mobilization analysis for landslides transforming into debris-flow in slope areas. In this study,statistical analyses such as discriminant analysis and logistic regression analysis were conducted to develop a mobilizationcriterion using geomorphological and geological factors. Ten parameters of geomorphological and geological factors wereused as independent variables, and 466 cases (228 non-mobilization cases and 238 mobilization cases) were investigatedfor the statistical analyses. First of all, Fisher’s discriminant function was used for the mobilization criterion. It showed91.6 percent in the accuracy of actual mobilization cases, but homogeneity condition of variance and covariance betweennon-mobilization and mobilization groups was not satisfied, and independent variables did not follow normal distribution,either. Second, binomial logistic analysis was conducted for the mobilization criterion. The result showed 92.3 percentin the accuracy of actual mobilization cases, and all assumptions for the logistic analysis were satisfied. Therefore, itcan be concluded that the mobilization criterion for debris-flow using binomial logistic regression analysis can beeffectively applied for the prediction of debris-flow hazard analysis.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국지반공학회논문집”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 05일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
7:05 오전