• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

암호화된 빅데이터 상에서 효율적인 질의 처리를 지원하는 Prefix 트리를 사용한 GPU 기반 병렬 질의처리 기법 (GPU-based Parallel Query Processing Scheme using Prefix tree for supporting efficient query processing on encrypted big data)

12 페이지
기타파일
최초등록일 2025.05.17 최종저작일 2014.04
12P 미리보기
암호화된 빅데이터 상에서 효율적인 질의 처리를 지원하는 Prefix 트리를 사용한 GPU 기반 병렬 질의처리 기법
  • 미리보기

    서지정보

    · 발행기관 : 한국차세대컴퓨팅학회
    · 수록지 정보 : 한국차세대컴퓨팅학회 논문지 / 10권 / 2호 / 19 ~ 30페이지
    · 저자명 : 신영성, 장재우, 이현조

    초록

    최근 페이스북, 트위터 등의 SNS(Social Networking Service)가 발전함에 따라, 사용자가 생성하는 데이터가 급격히 증가하고 있다. 사용자 데이터는 민감한 개인정보를 포함하기 때문에, 원본 데이터를 공격자로부터 보호하기 위해서는 데이터를 암호화하는 것이 필요하다. 따라서 암호화된 데이터의 복호화 없이 질의를 처리하는 암호화 질의처리 기법이 제안되었다. 그러나 기존의 질의처리 기법은 암호화 데이터에 대한 색인 구조를 구축하고 이를 순차적으로 탐색하기 때문에, 데이터의 크기가 증가함에 따라 질의탐색 비용이 증가하는 문제점이 존재한다. 이를 위해, P.B.Volk, et al. 은 prefix 트리 기반 병렬 질의처리 알고리즘을 제안하였다. 제안하는 알고리즘은 암호화된 데이터를 위해 prefix 트리 구조를 구축하고, 트리를 부분 트리로 분할하여 생성된 모든 부분 트리를 병렬적으로 탐색한다. 그러나 이 알고리즘은 모든 부분 트리를 탐색하기 때문에, 트리 깊이에 따라 연산 비용이 급격히 증가하는 문제점이 존재한다. 아울러, 이 알고리즘은 범위 질의나 부분 매칭 등의 다양한 질의를 지원하지 못하는 문제점이 존재한다. 이러한 문제를 해결하기 위해, 본 논문에서는 prefix 트리 및 해시 테이블을 사용하는 GPU 기반 병렬 질의처리 알고리즘을 제안한다. 제안하는 알고리즘은 prefix 트리 loop-up 테이블을 사용하여 범위 질의 및 부분매칭 질의를 지원한다. 아울러 제안하는 알고리즘이 기존 P.B.Volk, et al. 의 알고리즘보다 검색 시간 측면에서 약 30% 우수한 성능을 나타냄을 보인다.

    영어초록

    Recently, social networking services, such as Facebook and Twitter, have been widely used, so the amount of the data created by users has been dramatically increased. Because the user-created data can contain privacy information, it is required to encrypt the data for protecting the original data from adversaries. Thus, an encrypted query processing scheme has been proposed to process the query without the decryption of the encrypted data. The existing schemes construct an index for the encrypted data, so they can process the query by sequentially accessing the index. As a result, the query processing cost increases as the amount of the data is increased. For this, P.B.Volk, et al. proposed a prefix-tree based parallel query processing algorithm. The algorithm constructs a prefix-tree structure for the encrypted data and searches all sub-trees on GPU in parallel by dividing the tree into sub-trees. However, the algorithm has a problem that its computational cost is highly increased according to the depth of the tree because it searches all sub-trees. In addition, the algorithm does not support the various types of queries, such as a range query and a partial matching query. To solve these problems, we, in this paper, propose a GPU-based parallel query processing algorithm using both a prefix-tree and a hash table. By using the prefix-tree look-up table, the proposed algorithm can support both a range query and a partial matching query. In addition, we show that the proposed algorithm is about 30% better on retrieval performance than the existing algorithm by P.B.Volk, et al.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가 요청 쿠폰 이벤트
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 04일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
8:08 오후