PARTNER
검증된 파트너 제휴사 자료

빅데이터 분석을 통한 중력식 항만시설 수정프로젝트 레벨의 상태변화 특성 분석 (A Study on Condition Analysis of Revised Project Level of Gravity Port facility using Big Data)

12 페이지
기타파일
최초등록일 2025.05.17 최종저작일 2021.06
12P 미리보기
빅데이터 분석을 통한 중력식 항만시설 수정프로젝트 레벨의 상태변화 특성 분석
  • 미리보기

    서지정보

    · 발행기관 : 한국재난정보학회
    · 수록지 정보 : 한국재난정보학회 논문집 / 17권 / 2호 / 254 ~ 265페이지
    · 저자명 : 나용현, 박미연, 장신우

    초록

    연구목적: 국내 항만시설의 진단을 통한 성능 및 안전에 대한 점검과 진단을 20년 넘게 진행되었지만 그 진단 이력과 결과를 활용한 중장기적인 시설개선과 성능개선을 위한 발전전략이나 방향이 현실적으로 작동하지 않고 있다. 특히, 사용년수가 오래된 항만구조물의 경우, 선박의 대형화와 사용빈도 증가, 기후변화로 인한 자연재해의 영향 등으로 안전성능과 기능적 면에서 상당히 많은 문제점을 내포하고 있다. 연구방법: 본 연구에서는 중력식 안벽에 대한 부재수준의 유지관리 이력 데이터를 수집하여 이를 빅데이터로써 정의하고 해당 데이터를 바탕으로 프로젝트 수준의 시설물의 노후화 패턴 및 열화를 추정하기 위한 예측근사모델을 도출하였다. 특히 GP 및 SGP 기법의 머신러닝 알고리즘을 통하여 생성된 상태기반 노후도 패턴 및 열화 근사모델에 대한 유효성 검토를 통해 빅데이터 활용에 적합한 모델을 상호비교하고 제안하였다. 연구결과: 제안된 기법의 적합성을 검토한 결과 GP기법은 RMSE 및 R2는 0.9854와 0.0721, SGP기법은 0.7246과 0.2518로 GP기법을 적용한 예측모델이 적합한 것으로 검토 되었다. 결론: 머신러닝 기법을 통해 이러한 연구는 향후 항만시설 데이터취합이 지속적으로 이루어진다면 향후 항만시설 투자의사결정에 중요한 역할을 할 것으로 기대한다.

    영어초록

    Purpose: Inspection and diagnosis on the performance and safety through domestic port facilities have been conducted for over 20 years. However, the long-term development strategies and directions for facility renewal and performance improvement using the diagnosis history and results are not working in realistically. In particular, in the case of port structures with a long service life, there are many problems in terms of safety and functionality due to increasing of the large-sized ships, of port use frequency , and the effects of natural disasters due to climate change. Result: In this study, the maintenance history data of the gravity type quay in element level were collected, defined as big data, and a predictive approximation model was derived to estimate the pattern of deterioration and aging of the facility of project level based on the data. In particular, we compared and proposed models suitable for the use of big data by examining the validity of the state-based deterioration pattern and deterioration approximation model generated through machine learning algorithms of GP and SGP techniques. Result: As a result of reviewing the suitability of the proposed technique, it was considered that the RMSE and R2 in GP technique were 0.9854 and 0.0721, and the SGP technique was 0.7246 and 0.2518. Conclusion: This research through machine learning techniques is expected to play an important role in decision-making on investment in port facilities in the future if port facility data collection is continuously performed in the future.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국재난정보학회 논문집”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 02일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
10:38 오후