• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

소셜 빅 데이터 분석을 통한 지방대학의 위기 분석과 그 극복 방안 (Analysis and Overcoming Measures of Crisis in Local Universities through Social Big Data Analysis)

38 페이지
기타파일
최초등록일 2025.05.17 최종저작일 2021.06
38P 미리보기
소셜 빅 데이터 분석을 통한 지방대학의 위기 분석과 그 극복 방안
  • 미리보기

    서지정보

    · 발행기관 : 한국비교정부학회
    · 수록지 정보 : 한국비교정부학보 / 25권 / 2호 / 215 ~ 252페이지
    · 저자명 : 이상엽

    초록

    (Purpose) Recently, universities have called for a comprehensive and strategic overhaul of human resource development due to changes in the number of school-age population, entering an aging society, diversity in education demand due to population diversification, popularization of higher education, and non-face-to-face learning due to Covid-19. In particular, special measures are needed as the crisis at local universities is accelerating due to the disappearance of local areas and a sharp drop in the number of admissions population. To establish an effective and responsive university support policy, social changes and opinions which cannot be identified by simple questionnaire survey and interviews with the participants should be reflected through the social big data in which various social perceptions and participants’ opinions are explicitly and implicitly reflected. In this paper, I analyzed how university members and the general public are changing their perceptions of the crisis of local universities due to the decrease in local population over the past five years through social big data analysis.
    (Design/methodology/approach) Data collection period is a total of 5 years from April 1st 2016 to March 31st 2021, and the data were collected yearly basis. Collection channels are blogs (Naver, Daum) and Facebook. Keywords were crisis of local universities, lack of recruitment, closure of universities, abolition of departments, enrollment quota, recruitment rate of freshmen, shortage of enrollment rate, etc.. Textom and UCINET6 / Netdraw were used as analysis tools. Regarding analysis techniques, keywords were identified through the analysis of occurrence frequency of yearly collected data, and yearly centrality (connection centrality, eigenvetor centrality) were analyzed. Based on yearly keywords, semantic network analysis was subsequently conducted. Total number of collected data was 97,491, (Findings) According to an analysis of the annual topic terms, keywords such as "university", "enrollment recruitment", "not filled", "enrollment quota", "local university", "recruitment of students" and "new students" appeared frequently.
    As a result of checking the centrality value, keywords such as "university", "enrollment recruitment", "not filled", "enrollment quota", Other influential keywords included "grade", "local university", "new students", "recruitment", "admission", "student" and "local". The keyword's meaning network showed a high degree of connection between "university-local", "university-capital university", "university-local university", "university-enrollment recruitment", and "university-filling" (Research implications or Originality) In the policy alternative section, the government's policies related to the adjustment of the admission quota of universities, measures at the local university level, departmental efforts, and measures to attract students to local and local universities were proposed.

    영어초록

    (Purpose) Recently, universities have called for a comprehensive and strategic overhaul of human resource development due to changes in the number of school-age population, entering an aging society, diversity in education demand due to population diversification, popularization of higher education, and non-face-to-face learning due to Covid-19. In particular, special measures are needed as the crisis at local universities is accelerating due to the disappearance of local areas and a sharp drop in the number of admissions population. To establish an effective and responsive university support policy, social changes and opinions which cannot be identified by simple questionnaire survey and interviews with the participants should be reflected through the social big data in which various social perceptions and participants’ opinions are explicitly and implicitly reflected. In this paper, I analyzed how university members and the general public are changing their perceptions of the crisis of local universities due to the decrease in local population over the past five years through social big data analysis.
    (Design/methodology/approach) Data collection period is a total of 5 years from April 1st 2016 to March 31st 2021, and the data were collected yearly basis. Collection channels are blogs (Naver, Daum) and Facebook. Keywords were crisis of local universities, lack of recruitment, closure of universities, abolition of departments, enrollment quota, recruitment rate of freshmen, shortage of enrollment rate, etc.. Textom and UCINET6 / Netdraw were used as analysis tools. Regarding analysis techniques, keywords were identified through the analysis of occurrence frequency of yearly collected data, and yearly centrality (connection centrality, eigenvetor centrality) were analyzed. Based on yearly keywords, semantic network analysis was subsequently conducted. Total number of collected data was 97,491, (Findings) According to an analysis of the annual topic terms, keywords such as "university", "enrollment recruitment", "not filled", "enrollment quota", "local university", "recruitment of students" and "new students" appeared frequently.
    As a result of checking the centrality value, keywords such as "university", "enrollment recruitment", "not filled", "enrollment quota", Other influential keywords included "grade", "local university", "new students", "recruitment", "admission", "student" and "local". The keyword's meaning network showed a high degree of connection between "university-local", "university-capital university", "university-local university", "university-enrollment recruitment", and "university-filling" (Research implications or Originality) In the policy alternative section, the government's policies related to the adjustment of the admission quota of universities, measures at the local university level, departmental efforts, and measures to attract students to local and local universities were proposed.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국비교정부학보”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 18일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
4:26 오전