• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

형사사법정보의 빅데이터 활용방안 연구: 구조화 범주화 관점으로 (A Study on the Use of Criminal Justice Information Big Data in terms of the Structuralization and Categorization)

25 페이지
기타파일
최초등록일 2025.05.17 최종저작일 2019.12
25P 미리보기
형사사법정보의 빅데이터 활용방안 연구: 구조화 범주화 관점으로
  • 미리보기

    서지정보

    · 발행기관 : 한국정보관리학회
    · 수록지 정보 : 정보관리학회지 / 36권 / 4호 / 253 ~ 277페이지
    · 저자명 : 김미령, 노윤주, 김성훈

    초록

    4차 산업혁명시대를 맞아 데이터의 중요성은 심화되고 있으나, 개인정보보호 등의 문제로 데이터의 활용이 쉽지 않은 경우가 많이 있다. 형사사법정보는 범죄 예측 및 예방, 범죄수사 과학화, 양형합리화 등 다양한 활용가치가 예상됨에도 현재 개인정보보호와 형사사법정보 관련 법률적 해석 문제로 활용이 상당히 제한되고 있다. 본 연구는 형사사법정보의 구조화․범주화를 통해 ‘범죄데이터’로 전환하여 빅데이터로서 활용하도록 제안하였으며, ‘범죄데이터’ 활용시 법률적 문제, 활용가치, 데이터 생성 및 활용시 고려사항을 전문가를 통해 검증하고 향후 전략적 발전방안을 도출하였다. 연구결과, ‘범죄데이터’는 개인정보보호문제는 해결된 것으로 보여지나, 형사사법정보 관련법에 명시할 필요는 있으며, 빅데이터 활용을 위해 분석 가능하도록 표준화된 형태로 정리되는 것이 시급함이 밝혀졌다. 향후 진행방향으로는 데이터 요소 도출, 용어사전 시소러스 구축, 데이터 등급화를 위한 개인민감정보 정의 및 등급지정, 비정형데이터의 정형화를 위한 알고리즘 개발 등을 제시하였다.

    영어초록

    In the era of the 4th Industrial Revolution, the importance of data is intensifying, but there are many cases where it is not easy to use data due to personal information protection. Although criminal justice information is expected to have various useful values such as crime prediction and prevention, scientific investigation of criminal investigations, and rationalization of sentencing, the use of criminal justice information is currently limited as a matter of legal interpretation related to privacy protection and criminal justice information. This study proposed to convert criminal justice information into ‘crime data’ and use it as big data through the structuralization and categorization of criminal justice information. And when using “crime data,” legal issues, value in use, considerations for data generation and use were verified by experts, and future strategic development plans were identified. Finally we found that ‘crime data’ seems to have solved the privacy problem, but it is necessary to specify in the criminal justice information related law and it is urgent to be organized in a standardized form for analysis to use big data. Future directions are to derive data elements, construct a dictionary thesaurus, define and classify personal sensitive information for data grading, and develop algorithms for shaping unstructured data.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보관리학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 11월 28일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
10:07 오전