• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

빅데이터 기반 문서 토픽 추출 시스템 연구 (A Study on the Document Topic Extraction System Based on Big Data)

8 페이지
기타파일
최초등록일 2025.05.16 최종저작일 2020.10
8P 미리보기
빅데이터 기반 문서 토픽 추출 시스템 연구
  • 미리보기

    서지정보

    · 발행기관 : 한국인터넷방송통신학회
    · 수록지 정보 : 한국인터넷방송통신학회 논문지 / 20권 / 5호 / 207 ~ 214페이지
    · 저자명 : 황승연, 안윤빈, 신동진, 오재곤, 문진용, 김정준

    초록

    요즘 스마트폰, 각종 전자기기 등의 사용이 늘고, 인터넷과 SNS가 활성화되며 우리는 정보의 홍수 속에 살고있다. 정보의 양이 기하급수적으로 증가하며 많은 정보를 다 살펴보는 것이 어려워졌고, 문서에서 핵심 키워드만 보기를원하는 사람이 늘어나며 정보의 핵심이 되는 토픽을 추출하는 연구의 중요성이 증가하고 있다. 또한, 토픽을 추출하여과거와 비교 분석하여 현재의 트렌드를 유추해내는 것도 최근 중요한 이슈이다. 토픽 모델링 기법을 이용하여 대량의문서에서 토픽을 추출해낼 수 있으며, 이렇게 추출된 토픽은 트렌드 예측, 데이터 분석 등 다양한 분야에서 쓰일 수 있다.
    본 논문에서는 빠르게 변하는 트렌드를 분석하여 시대의 흐름에 맞춰가기 위해 확률적 토픽 모델 기법의 하나인 LDA 알고리즘을 활용하였으며, 문서에서 컴퓨팅 분야의 2016, 2017, 2018년도 3개년 논문의 주제를 알아보고, 연구의 동향과 흐름을 분석한다.

    영어초록

    Nowadays, the use of smart phones and various electronic devices is increasing, the Internet and SNS are activated, and we live in the flood of information. The amount of information has grown exponentially, making it difficult to look at a lot of information, and more and more people want to see only key keywords in a document, and the importance of research to extract topics that are the core of information is increasing. In addition, it is also an important issue to extract the topic and compare it with the past to infer the current trend. Topic modeling techniques can be used to extract topics from a large volume of documents, and these extracted topics can be used in various fields such as trend prediction and data analysis. In this paper, we inquire the topic of the three-year papers of 2016, 2017, and 2018 in the field of computing using the LDA algorithm, one of Probabilistic Topic Model Techniques, in order to analyze the rapidly changing trends and keep pace with the times. Then we analyze trends and flows of research.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국인터넷방송통신학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 26일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
3:27 오후