• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

빅데이터 통합모형 비교분석 (Comparison analysis of big data integration models)

한국학술지에서 제공하는 국내 최고 수준의 학술 데이터베이스를 통해 다양한 논문과 학술지 정보를 만나보세요.
14 페이지
기타파일
최초등록일 2025.05.16 최종저작일 2017.07
14P 미리보기
빅데이터 통합모형 비교분석
  • 미리보기

    서지정보

    · 발행기관 : 한국데이터정보과학회
    · 수록지 정보 : 한국데이터정보과학회지 / 28권 / 4호 / 755 ~ 768페이지
    · 저자명 : 정병호, 임동훈

    초록

    빅데이터가 4차 산업혁명의 핵심으로 자리하면서 빅데이터 기반 처리 및 분석 능력이 기업의 미래 경쟁력을 좌우할 전망이다. 빅데이터 처리 및 분석을 위한 RHadoop과 RHIPE 모형은 R과 Hadoop의 통합모형으로 지금까지 각각의 모형에 대해서는 연구가 많이 진행되어 왔으나 두 모형 간 비교 연구는 거의 이루어 지지 않았다. 본 논문에서는 대용량의 실제 데이터와 모의실험 데이터에서 다중 회귀 (multiple regression)와 로지스틱 회귀 (logistic regression) 추정을 위한 머신러닝(machine learning) 알고리즘을 MapReduce 프로그램 구현을 통해 RHadoop과 RHIPE 간의 비교 분석하고자 한다. 구축된 분산 클러스터 (distributed cluster) 하에서 두 모형간 성능 실험 결과, RHIPE은 RHadoop에 비해 대체로 빠른 처리속도를 보인 반면에 설치, 사용면에서 어려움을 보였다.

    영어초록

    As Big Data becomes the core of the fourth industrial revolution, big data-based processing and analysis capabilities are expected to influence the company’s future competitiveness. Comparative studies of RHadoop and RHIPE that integrate R and Hadoop environment, have not been discussed by many researchers although RHadoop and RHIPE have been discussed separately. In this paper, we constructed big data platforms such as RHadoop and RHIPE applicable to large scale data and implemented the machine learning algorithms such as multiple regression and logistic regression based on MapReduce framework. We conducted a study on performance and scalability with those implementations for various sample sizes of actual data and simulated data. The experiments demonstrated that our RHadoop and RHIPE can scale well and efficiently process large data sets on commodity hardware. We showed RHIPE is faster than RHadoop in almost all the data generally.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국데이터정보과학회지”의 다른 논문도 확인해 보세요!

찾으시던 자료가 아닌가요?

지금 보는 자료와 연관되어 있어요!
왼쪽 화살표
오른쪽 화살표
문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • EasyAI 무료체험
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 10월 13일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
5:39 오전