PARTNER
검증된 파트너 제휴사 자료

지도학습 기반 암상 분류 시 클래스 간 자료 불균형을 고려한 평가지표 개발 (Development of Evaluation Metrics that Consider Data Imbalance between Classes in Facies Classification)

10 페이지
기타파일
최초등록일 2025.05.15 최종저작일 2020.08
10P 미리보기
지도학습 기반 암상 분류 시 클래스 간 자료 불균형을 고려한 평가지표 개발
  • 미리보기

    서지정보

    · 발행기관 : 한국지구물리.물리탐사학회
    · 수록지 정보 : 지구물리와 물리탐사 / 23권 / 3호 / 131 ~ 140페이지
    · 저자명 : 김도완, 최준환, 변중무

    초록

    머신러닝을 이용한 분류 모델 훈련에서 학습자료의 양과 질은 학습한 모델의 성능을 좌우하므로 학습자료 생성이 매우 중요한 역할을 한다. 그러나 자료 생성에 높은 비용이 들어 이상적인 학습자료 생성이 어려울 때에는 클래스 간자료 불균형 문제가 발생한다. 만약 학습자료로 사용될 탐사자료가 클래스 간 불균형하게 얻어지면, 클래스 별로 균형있는 학습이 이루어지기 힘들다. 따라서 데이터가 상대적으로 적은 클래스는 재현율이 현저히 떨어지게 된다. 그 뿐만 아니라 정확도와 정밀도 등의 평가지표들에 대한 신뢰도가 떨어지게 된다. 따라서 이 연구에서는 두 단계에 걸쳐 자료 불균형 문제를 해소하고자 하였다. 첫 번째로 기존의 정확도와 정밀도를 개선하여 자료 불균형을 고려할 수 있는 새로운평가지표로 가중정확도와 가중정밀도를 고안하였다. 다음으로 클래스 간의 가중정밀도와 재현율의 균형을 맞추어 주도록오버샘플링을 수행하였다. 개발한 알고리듬을 물리검층 자료를 이용한 암상 및 공극유체 규명 문제에 적용함으로써 검증하였다. 그 결과 다수 클래스와 소수 클래스들 간의 불균형이 상당 부분 완화되었고, 클래스 간의 경계를 보다 명확하게확인할 수 있었다.

    영어초록

    In training a classification model using machine learning, the acquisition of training data is a very important stage, because the amount and quality of the training data greatly influence the model performance. However, when the cost of obtaining data is so high that it is difficult to build ideal training data, the number of samples for each class may be acquired very differently, and a serious data-imbalance problem can occur. If such a problem occurs in the t raining data, a ll c lasses a re not t rained equally, and classes containing relatively few data will have significantly lower recall values. Additionally, the reliability of evaluation indices such as accuracy and precision will be reduced.
    Therefore, this study sought to overcome the problem of data imbalance in two stages. First, we introduced weighted accuracy and weighted precision as new evaluation indices that can take into account a data-imbalance ratio by modifying conventional measures of accuracy and precision. Next, oversampling was performed to balance weighted precision and recall among classes. We verified the algorithm by applying it to the problem of facies classification.
    As a result, the imbalance between majority and minority classes was greatly mitigated, and the boundaries between classes could be more clearly identified.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“지구물리와 물리탐사”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 03일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
5:24 오후