• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

SOM기반 특징 신호 추출 기법을 이용한 불균형 주기 신호의 이상 탐지 (Fault Detection of Unbalanced Cycle Signal Data Using SOM-based Feature Signal Extraction Method)

12 페이지
기타파일
최초등록일 2025.05.15 최종저작일 2012.06
12P 미리보기
SOM기반 특징 신호 추출 기법을 이용한 불균형 주기 신호의 이상 탐지
  • 미리보기

    서지정보

    · 발행기관 : 한국시뮬레이션학회
    · 수록지 정보 : 한국시뮬레이션학회 논문지 / 21권 / 2호 / 79 ~ 90페이지
    · 저자명 : 김송이, 강지훈, 박종혁, 김성식, 백준걸

    초록

    본 연구는 공정신호가 불균형 데이터인 경우 이상 탐지 알고리즘의 성능 개선을 위한 특징 신호 추출 기법을 제안한다.
    불균형 데이터란 범주 구분 문제에서 하나의 범주의 속하는 데이터의 비율이 다른 범주의 데이터에 비해 크게 차이나 이상 탐지성능이 크게 저하되는 경우를 의미한다. 공정이 운영되는 경우 얻을 수 있는 이상 신호의 수는 정상 신호에 비해 매우 적기에이러한 문제를 해결하여 이상 탐지 기법을 적용하는 것은 매우 중요하다. 불균형 문제 해결을 위해 SOM(Self-Organizing Map)알고리즘을 이용하여 각 노드에 대응되는 가중치를 특징 신호로 간주하여 정상 데이터와 이상 데이터의 비율을 맞춘다. 특징신호 데이터 집단의 이상 탐지를 위해 클래스 분류 기법인 kNN(k-Nearest Neighbor)과 SVM(Support Vector Machine)을 적용하여 이를 공정 신호 이상탐지를 위해 주로 사용하는 Hotelling’s T^2 관리도와 성능을 비교한다. 반도체 공정에서 발생한다고 알려진 공정 신호를 모사하여 신호 알고리즘 성능의 우수성을 검증한다.

    영어초록

    In this paper, a feature signal extraction method is proposed in order to enhance the low performance of fault detection caused by unbalanced data which denotes the situations when severe disparity exists between the numbers of class instances. Most of the cyclic signals gathered during the process are recognized as normal, while only a few signals are regarded as fault; the majorities of cyclic signals data are unbalanced data. SOM(Self-Organizing Map)-based feature signal extraction method is considered to fix the adverse effects caused by unbalanced data. The weight neurons, mapped to the every node of SOM grid, are extracted as the feature signals of both class data which are used as a reference data set for fault detection. kNN(k-Nearest Neighbor) and SVM(Support Vector Machine)are considered to make fault detection models with comparisons to Hotelling’s T^2 Control Chart, the most widely used method for fault detection. Experiments are conducted by using simulated process signals which resembles the frequent cyclic signals in semiconductor manufacturing.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국시뮬레이션학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 03일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
2:09 오전