• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

앙상블 경험적 모드 분해법을 이용한 도시부 단기 통행속도 예측 (Short-term Prediction of Travel Speed in Urban Areas Using an Ensemble Empirical Mode Decomposition)

8 페이지
기타파일
최초등록일 2025.05.14 최종저작일 2018.08
8P 미리보기
앙상블 경험적 모드 분해법을 이용한 도시부 단기 통행속도 예측
  • 미리보기

    서지정보

    · 발행기관 : 대한토목학회
    · 수록지 정보 : 대한토목학회논문집(국문) / 38권 / 4호 / 579 ~ 586페이지
    · 저자명 : 김의진, 김동규

    초록

    단기 통행속도 예측을 위해 데이터 기반 비모수적 기법들을 활용한 다양한 연구들이 수행되고 있다. 그럼에도 교통신호 및 교차로로 인한 복잡한 동적 특성을 가지는 도시부의 예측 연구는 상대적으로 부족한 실정이다. 본 연구는 도시부 통행 속도를 예측하기 위해 앙상블 경험적 모드 분해법(EEMD)과 인공신경망(ANN)을 이용한 하이브리드 접근법을 제안하는 것을 목적으로 한다. EEMD는 통행속도의 시계열 자료를 고유모드 함수(IMF)와 오차항으로 분해한다. 분해된 IMF는 시간단위의 국지적 특성을 반영하며, ANN을 통해 개별적으로 예측된다. IMF는 원본데이터가 가진 비선형성, 비정상성, 진동 등의 복잡성을 완화하기 때문에, 원래의 통행속도에 비하여 더 정확하게 예측될 수 있다. 예측된 IMF들은 합산되어 예측 통행속도를 표현한다. 본 연구에서 제시된 방법을 검증하기 위하여 대구시의 DSRC로부터 구득된 통행속도 데이터가 활용된다.
    성능평가는 도시부 링크 중 특히 예측이 어려운 지점에 대해 수행되었으며, 분석 결과 제시된 모형은 15분 후 예측에 대해 각각 평상시 10.41%, 와해상태시 25.35%의 오차율을 가지며, 단순 ANN 기법에 비하여 우수한 성능을 보이는 것으로 확인된다. 본 연구에서 개발된 모형은 도시교 통관리체계의 신뢰성 있는 교통정보를 제공하는 데에 기여할 수 있을 것으로 기대된다.

    영어초록

    Short-term prediction of travel speed has been widely studied using data-driven non-parametric techniques. There is, however, a lack of research on the prediction aimed at urban areas due to their complex dynamics stemming from traffic signals and intersections. The purpose of this study is to develop a hybrid approach combining ensemble empirical mode decomposition (EEMD) and artificial neural network (ANN) for predicting urban travel speed. The EEMD decomposes the time-series data of travel speed into intrinsic mode functions (IMFs) and residue. The decomposed IMFs represent local characteristics of time-scale components and they are predicted using an ANN, respectively. The IMFs can be predicted more accurately than their original travel speed since they mitigate the complexity of the original data such as non-linearity, non-stationarity, and oscillation. The predicted IMFs are summed up to represent the predicted travel speed. To evaluate the proposed method, the travel speed data from the dedicated short range communication (DSRC) in Daegu City are used. Performance evaluations are conducted targeting on the links that are particularly hard to predict. The results show the developed model has the mean absolute error rate of 10.41% in the normal condition and 25.35% in the break down for the 15-min-ahead prediction, respectively, and it outperforms the simple ANN model. The developed model contributes to the provision of the reliable traffic information in urban transportation management systems.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“대한토목학회논문집(국문)”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 01일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
9:51 오전