• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

인공지능 기법을 이용한 조영제 부작용 예측 연구 (Contrast Media Side Effects Prediction Study using Artificial Intelligence Technique)

9 페이지
기타파일
최초등록일 2025.05.14 최종저작일 2023.06
9P 미리보기
인공지능 기법을 이용한 조영제 부작용 예측 연구
  • 미리보기

    서지정보

    · 발행기관 : 한국방사선학회
    · 수록지 정보 : 한국방사선학회논문지 / 17권 / 3호 / 423 ~ 431페이지
    · 저자명 : 김상현

    초록

    본 연구의 목적은 환자의 신체정보와 인공지능 기법을 활용하여 부작용에 영향을 미치는 인자들을 분석하고 조영제 부작용의 정도를 예측하여 이를 완화하는 기초자료로 활용되고자 한다. 연구에 사용한 데이터는 서울 소재 종합병원의 검진을 시행한 CT 검사 58,000건 중 조영제 부작용이 발생한 1,235건 중 과거력 조사에서 조영제 부작용이 없었던 606명의 검사자를 대상자로 하였다. 606개 샘플 중 70%는 훈련 셋으로 사용하고 나머지 30%는 검증을 위한 테스트 셋으로 사용하였다. 나이, BMI(Body Mass Index), GFR(Glomerular Filtration Rate), BUN(Blood Urea Nitrogen), GGT(Gamma Glutamyl Transgerase), AST(Aspartate Amino Transferase,), and ALT(Alanine Amiono Transferase)의 feature를 독립변수로 조영제 중증도를 목표변수로 사용하였다. AdaBoost, Tree, Neural network, SVM, Random foest 알고리즘을 통해 AUC(Area under curve), CA(Classification Accuracy), F1, Precision, Recall을 파악하였다. 분류 예측에 사용된 알고리즘 중 가장 높은 평가지표를 나타내 것은 AdaBoost와 Random Forest이다. 모든 모델의 예측에서 가장 큰 요인은 GFR, BMI, GGT 이였다. 이는 신장 여과 기능, 비만에 따라 주입되는 조영제 양의 차이와 대사증후군의 여부에 따라 조영제 부작용 중증도에 영향을 미치는 것을 알 수 있었다.

    영어초록

    The purpose of this study is to analyze the factors affecting the classification of the severity of contrast media side effects based on the patient's body information using artificial intelligence techniques to be used as basic data to reduce the degree of contrast medium side effects. The data used in this study were 606 examiners who had no contrast medium side effects in the past history survey among 1,235 cases of contrast medium side effects among 58,000 CT scans performed at a general hospital in Seoul. The total data is 606, of which 70% was used as a training set and the remaining 30% was used as a test set for validation. Age, BMI(Body Mass Index), GFR(Glomerular Filtration Rate), BUN(Blood Urea Nitrogen), GGT(Gamma Glutamyl Transgerase), AST(Aspartate Amino Transferase,), and ALT(Alanine Amiono Transferase) features were used as independent variables, and contrast media severity was used as a target variable. AUC(Area under curve), CA(Classification Accuracy), F1, Precision, and Recall were identified through AdaBoost, Tree, Neural network, SVM, and Random foest algorithm. AdaBoost and Random Forest show the highest evaluation index in the classification prediction algorithm. The largest factors in the predictions of all models were GFR, BMI, and GGT. It was found that the difference in the amount of contrast media injected according to renal filtration function and obesity, and the presence or absence of metabolic syndrome affected the severity of contrast medium side effects.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국방사선학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • EasyAI 무료체험
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 10월 12일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
3:31 오전