• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

초분광 영상을 이용한 봄감자의 잎 Na 함량 예측 모델 개발 (Development of Prediction Model for the Na Content of Leaves of Spring Potatoes Using Hyperspectral Imagery)

13 페이지
기타파일
최초등록일 2025.05.13 최종저작일 2021.12
13P 미리보기
초분광 영상을 이용한 봄감자의 잎 Na 함량 예측 모델 개발
  • 미리보기

    서지정보

    · 발행기관 : 한국농림기상학회
    · 수록지 정보 : 한국농림기상학회지 / 23권 / 4호 / 316 ~ 328페이지
    · 저자명 : 박준우, 강예성, 류찬석, 장시형, 강경석, 김태양, 박민준, 백현찬, 송혜영, 전새롬, 이수환

    초록

    본 연구에서는 간척지의 염분 모니터링을 위한 다중 분광 센서를 개발하기 위해 400∼1000 nm 초분광 센서를 사용하여 봄 감자의 잎 Na 함량 예측 모델을 구축하고자 하였다. 관개조건은 표준, 한해, 염해(2, 4, 8 dS/m)로, 관수량은 증발량을 기준으로 산정하였다. 영양생장기, 괴경형성기, 괴경비대기에 각각 관개를 시작한 후 1주와 2주 후에 잎의 Na 함량을 측정하였다. 잎의 반사율은 10nm 파장 간격을 기준으로 5 nm에서 10nm, 25nm, 50nm FWHM (full width at half maximum)으로 변환되었다. PLS-VIP를 사용하여 봄감자 잎의 Na 함량에 따른 염분 피해 수준을 예측하기 위한 10개의 밴드비가 선택되었다. 선택된 10개의 밴드비 중 가중치가 가장 낮은 순서대로 밴드비를 하나씩 제거하면서 MLR모델을 추정하였다. 모델의 성능은 R2, MAPE 뿐만 아니라 밴드비의 수, 다중 분광센서를 작게 만들기 위한 최적의 FWHM 수로 비교하였다. 1, 2주차의 영양생장기, 괴경형성기와 2주차의 괴경비대기에서 봄 감자의 잎 Na 함량을 예측하기 위해서는 25 nm의 FWHM을 사용하는 것이 유리하였다. 선택된 밴드필터는 430/440, 490/500, 500/510, 550/560, 570/580, 590/600, 640/650, 650/660, 670/680, 680/690, 690/700, 700/710, 710/720, 720/730, 730/740 nm로 Red 및 Red-edge 영역에서 15개 밴드비가 선택되었다.

    영어초록

    In this study, the leaf Na content prediction model for spring potato was established using 400-1000 nm hyperspectral sensor to develop the multispectral sensor for the salinity monitoring in reclaimed land. The irrigation conditions were standard, drought, and salinity (2, 4, 8 dS/m), and the irrigation amount was calculated based on the amount of evaporation. The leaves’ Na contents were measured 1st and 2nd weeks after starting irrigation in the vegetative, tuber formative, and tuber growing periods, respectively. The reflectance of the leaves was converted from 5 nm to 10 nm, 25 nm, and 50 nm of FWHM (full width at half maximum) based on the 10 nm wavelength intervals. Using the variance importance in projections of partial least square regression(PLSR-VIP), ten band ratios were selected as the variables to predict salinity damage levels with Na content of spring potato leaves. The MLR(Multiple linear regression) models were estimated by removing the band ratios one by one in the order of the lowest weight among the ten band ratios. The performance of models was compared by not only R2, MAPE but also the number of band ratios, optimal FWHM to develop the compact multispectral sensor. It was an advantage to use 25 nm of FWHM to predict the amount of Na in leaves for spring potatoes during the 1st and 2nd weeks vegetative and tuber formative periods and 2 weeks tuber growing periods. The selected bandpass filters were 15 bands and mainly in red and red-edge regions such as 430/440, 490/500, 500/510, 550/560, 570/580, 590/600, 640/650, 650/660, 670/680, 680/690, 690/700, 700/710, 710/720, 720/730, 730/740 nm.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국농림기상학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 20일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
1:26 오전