• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

볼 베어링 고장진단 기법 비교 및 XAI Grad-CAM을 이용한 분류결과 해석 연구 (A Comparison Study of Ball Bearing Fault Diagnosis and Classification Analysis Using XAI Grad-CAM)

11 페이지
기타파일
최초등록일 2025.05.13 최종저작일 2022.09
11P 미리보기
볼 베어링 고장진단 기법 비교 및 XAI Grad-CAM을 이용한 분류결과 해석 연구
  • 미리보기

    서지정보

    · 발행기관 : 대한전기학회
    · 수록지 정보 : 전기학회논문지 / 71권 / 9호 / 1315 ~ 1325페이지
    · 저자명 : 김영근, 김예진, 전현직

    초록

    Various machine learning and deep learning methods were proposed to monitor and classify the bearing's health state using vibration signals since bearing faults are one of the most causes of failure of rotationary machine. The process of diagnosing bearing faults using machine learning is as follows. First, the features, including the fault characteristic of the vibration signals, are extracted, and these features are selected to reduce the dimension of the features. These features are input into the machine learning classifier to diagnose the system's health. In addition to machine learning methods, CNN, one of the deep learning methods, is widely used.
    Since the deep learning model extracts features by itself, only the preprocessing process of converting the bearing signals into 2D is needed. The fault classification accuracy of two vibration signal transformation methods as preprocessing methods for the CNN model was compared. This paper compares the bearing fault classification performance of several machine learning commonly used and the CNN model for the lab-made wind turbine machinery testbed. By comparing different feature extraction, feature selection, and classification methods, the most appropriate pipeline is selected for the testbed. Also, grad-cam, an explainable AI(XAI) technique, is applied to interpret the CNN based classification in terms of interested frequency bandwidth. The XAI analysis was verified by designing preprocessing filters based on the grad-cam outputs for enhancing classification performance.

    영어초록

    Various machine learning and deep learning methods were proposed to monitor and classify the bearing's health state using vibration signals since bearing faults are one of the most causes of failure of rotationary machine. The process of diagnosing bearing faults using machine learning is as follows. First, the features, including the fault characteristic of the vibration signals, are extracted, and these features are selected to reduce the dimension of the features. These features are input into the machine learning classifier to diagnose the system's health. In addition to machine learning methods, CNN, one of the deep learning methods, is widely used.
    Since the deep learning model extracts features by itself, only the preprocessing process of converting the bearing signals into 2D is needed. The fault classification accuracy of two vibration signal transformation methods as preprocessing methods for the CNN model was compared. This paper compares the bearing fault classification performance of several machine learning commonly used and the CNN model for the lab-made wind turbine machinery testbed. By comparing different feature extraction, feature selection, and classification methods, the most appropriate pipeline is selected for the testbed. Also, grad-cam, an explainable AI(XAI) technique, is applied to interpret the CNN based classification in terms of interested frequency bandwidth. The XAI analysis was verified by designing preprocessing filters based on the grad-cam outputs for enhancing classification performance.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“전기학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • EasyAI 무료체험
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 10월 11일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
5:52 오후