• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

계층별 메트릭 생성을 이용한 계층적 Gaussian ARTMAP의 설계 (A Design of Hierarchical Gaussian ARTMAP using Different Metric Generation for Each Level)

9 페이지
기타파일
최초등록일 2025.05.11 최종저작일 2009.08
9P 미리보기
계층별 메트릭 생성을 이용한 계층적 Gaussian ARTMAP의 설계
  • 미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회논문지 : 소프트웨어 및 응용 / 36권 / 8호 / 633 ~ 641페이지
    · 저자명 : 최태훈, 임성길, 이현수

    초록

    본 논문에서는 아날로그 데이터 처리가 가능하고, 온라인 학습, 학습 중 새로운 클래스 추가 등의 특징을 가진 패턴 인식기를 제안하였다. 제안한 패턴 인식기는 계층적 구조를 가지고 있으며, 각 레벨별로 서로 다른 메트릭을 적용하여 분류 성능을 향상 시켰다. 제안한 패턴 인식기는 신경망 기반의 패턴 인식 알고리즘인 Gaussian ARTMAP 모델을 기반으로 하고 있다. Gaussian ARTMAP 모델을 계층적으로 구성하고, 계층마다 서로 다른 특징을 학습하도록 하기 위하여 Principal Component Emphasis (P.C.E) 방법을 제안하였으며, 이를 이용하여 새로운 메트릭을 생성하는 방법을 제안하였다. P.C.E는 학습된 입력 데이터들의 분산을 이용하여 클래스 내의 공통 속성을 나타내는 분산이 작은 차원을 제거하고 패턴 간의 서로 다른 속성을 나타내는 분산이 큰 차원만 유지하는 방법이다. 제안한 알고리즘의 학습 과정에서 교사 신호와 다르게 분류된 패턴이 발생하면 잘못 분류 된 클래스와 입력된 패턴을 분리하기 위하여 P.C.E를 수행하고 하위 노드에서 학습하게 된다. 실험 결과 제안한 모델은 기존에 제안된 패턴 인식 모델들 보다 높은 분류 성능을 가지고 있음을 확인하였다.

    영어초록

    In this paper, we proposed a new pattern classifier which can be incrementally learned, be added new class in learning time, and handle with analog data. Proposed pattern classifier has hierarchical structure and the classification rate is improved by using different metric for each levels. Proposed model is based on the Gaussian ARTMAP which is an artificial neural network model for the pattern classification. We hierarchically constructed the Gaussian ARTMAP and proposed the Principal Component Emphasis(P.C.E) method to be learned different features in each levels. And we defined new metric based on the P.C.E. P.C.E is a method that discards dimensions whose variation are small, that represents common attributes in the class. And remains dimensions whose variation are large. In the learning process, if input pattern is misclassified, P.C.E are performed and the modified pattern is learned in sub network. Experimental results indicate that Hierarchical Gaussian ARTMAP yield better classification result than the other pattern recognition algorithms on variable data set including real applicable problem.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보과학회논문지 : 소프트웨어 및 응용”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 11월 17일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
6:46 오후