• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

레이더 상 불특정 선박의 자동식별 알고리즘 (Automatic Recognition Algorithm of Unknown Ships on Radar)

9 페이지
기타파일
최초등록일 2025.05.10 최종저작일 2016.08
9P 미리보기
레이더 상 불특정 선박의 자동식별 알고리즘
  • 미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회논문지 / 43권 / 8호 / 848 ~ 856페이지
    · 저자명 : 정현철, 윤성웅, 이상훈

    초록

    해상 안전을 위한 선박의 탐색 및 식별은 매우 중요하다. 선박의 탐색은 레이더로 가능하나, 식별은 선박자동식별장치, 통신장비, 시각 등에 의해 이루어지며, 이러한 식별수단이 불능 시 레이더 운용자의 경험과 지식을 바탕으로 선박의 기동특성을 참고하여 식별하는 매우 어려운 경우가 발생한다. 본 논문에서는 지속적인 관찰임무를 수행해야 할 선박 탐색요원의 임무를 보조하기 위하여 레이더 상 선박의기동특성을 이용, 자동식별 및 사고발생 가능성을 탐지하는 방법을 제안한다. 4가지 유형의 선박 정보, 레이더 상 접촉거리 및 침로, 속력을 이용하여 그 특징을 추출하고, SVM을 활용하여 식별 정확도를 평가하였으며, 이를 이용한 자동식별 알고리즘을 통해 사고발생 가능성이 있는 선박을 선별하는 방법을 제시하였다. 실험 결과 90% 이상의 식별 정확도를 보였으며, 실제 사고선박인 세월호의 정보를 자동식별 알고리즘에 적용하여 선별 가능함을 보였다. 이 방법은 다양한 상황에서 선박 탐색요원의 경험과 지식을 효과적으로 보완하고, 다수의 선박 중 관심필요선박을 사전 식별하여 정보를 제공함으로서 탐색요원의 노력을 경감시키고, 문제점을 보다 빨리 인지하는데 도움이 될 것이다.

    영어초록

    Seeking and recognizing maritime targets are very important tasks for maritime safety.
    While searching for maritime targets using radar is possible, recognition is conducted without automatic identification system, radio communicator or visibility. If this recognition is not feasible, radar operator must tediously recognize maritime targets using movement features on radar base on know-how and experience. In this paper, to support the radar operator’s mission of continuous observation, we propose an algorithm for automatic recognition of an unknown ship using movement features on radar and a method of detecting potential ship related accidents. We extract features from contact range, course and speed of four types of vessels and evaluate the recognition accuracy using SVM and suggest a method of detecting potential ship related accidents through the algorithm.
    Experimentally, the resulting recognition accuracy is found to be more than 90% and presents the possibility of detecting potential ship related accidents through the algorithm using information of MV Sewol. This method is an effective way to support operator’s know-how and experience in various circumstances and assist in detecting potential ship related accidents.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보과학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 23일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
3:11 오전