• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

심박수변이도 분석을 위한 확률적 지식기반 모형 (A probabilistic knowledge model for analyzing heart rate variability)

9 페이지
기타파일
최초등록일 2025.05.10 최종저작일 2015.06
9P 미리보기
심박수변이도 분석을 위한 확률적 지식기반 모형
  • 미리보기

    서지정보

    · 발행기관 : 한국산업정보학회
    · 수록지 정보 : 한국산업정보학회논문지 / 20권 / 3호 / 61 ~ 69페이지
    · 저자명 : 손창식, 강원석, 최락현, 박형섭, 한성욱, 김윤년

    초록

    본 논문에서는 이산 웨이블릿 변환을 통해 추출된 시간 영역과 주파수 영역의 특징들을활용하여 심박수변이도를 확률적인 지식으로 분석할 수 있는 방법을 제안하였다. 제안된 방법에서 지식획득 알고리즘은 규칙생성과 규칙평가 단계로 구성되어 있으며, 규칙생성에서는 ROC 분석을 통해수치적인 속성값을 이산화된 구간으로 변환하고, 서로 다른 의사결정값을 포함하는 구간들 사이에 일관성 정도를 비교함으로써 감축된 규칙-집합을 생성한다. 이때 규칙-집합 내에 각 규칙에 대해서 확률적 해석을 위한 3가지 척도를 추정하였다. 제안된 모형의 효과성은 심혈관질환 병력을 가진 58명의심전도 데이터로부터 심방세동을 식별할 수 있는 5가지 규칙을 생성하였고, 이들 규칙의 분별력을 평가하였다. 실험결과, 제안된 모형으로부터 생성된 지식은 4가지 성능평가 척도에 대해서 각각 93%의정확도를 보여주었다.

    영어초록

    This study presents a probabilistic knowledge discovery method to interpret heartrate variability (HRV) based on time and frequency domain indexes, extracted using discretewavelet transform. The knowledge induction algorithm was composed of two phases: rulegeneration and rule estimation. Firstly, a rule generation converts numerical attributes to intervalsusing ROC curve analysis and constructs a reduced ruleset by comparing consistency degreebetween attribute-value pairs with different decision values. Then, we estimated three measuressuch as rule support, confidence, and coverage to a probabilistic interpretation for each rule. Toshow the effectiveness of proposed model, we evaluated the statistical discriminant power of five probabilistic knowledge model for analyzing heart rate variability- 62 -Fig. 1 Structure of HRV analysis model based on probabilistic knowledge discoveryrules (3 for atrial fibrillation, 1 for normal sinus rhythm, and 1 for both atrial fibrillation andnormal sinus rhythm) generated using a data (n=58) collected from 1 channel wireless holterelectrocardiogram (ECG), i.e., HeartCallⓇ, U-Heart Inc. The experimental result showed theperformance of approximately 0.93 (93%) in terms of accuracy, sensitivity, specificity, and AUCmeasures, respectively.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국산업정보학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 29일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
10:33 오전