• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

저전력 임베디드 보드 환경에서의 딥 러닝 기반 성별인식 시스템 구현 (Gender Classification System Based on Deep Learning in Low Power Embedded Board)

8 페이지
기타파일
최초등록일 2025.05.10 최종저작일 2017.01
8P 미리보기
저전력 임베디드 보드 환경에서의 딥 러닝 기반 성별인식 시스템 구현
  • 미리보기

    서지정보

    · 발행기관 : 한국정보처리학회
    · 수록지 정보 : 정보처리학회 논문지 / 6권 / 1호 / 37 ~ 44페이지
    · 저자명 : 정현욱, 김대회, Wisam J. Baddar, 노용만

    초록

    사물 인터넷(IoT) 산업이 확산되면서 사용자의 정보를 특별한 조작 없이 물체가 스스로 인식하는 일이 매우 중요해졌다. 그중에서도 성별(남, 여)은 생물학적인 구조가 달라 성향이 다르고 사회적으로도 기대하는 바가 다르기 때문에 매우 중요한 요소이다. 하지만 얼굴 이미지를 기반으로 한 성별 인식과 관련된 연구는 동일한 성별이라도 다양한 생김새를 가지고 있어서 여전히 도전적인 분야이다. 그리고 성별인식 시스템을 사물 인터넷에 적용하기 위해서는 디바이스 크기를 소형화 시켜야 하며 저전력으로 구동이 가능해야 한다. 따라서 본 논문에서는 저전력으로 실제 사물에서 성별을 인식할 수 있는 기능을 탑재하기 위해 딥 러닝 기반의 성별 인식 알고리즘을 제안하고 이를 모바일 GPU 임베디드 보드에 포팅하여 최종적으로 실시간 성별인식 시스템을 구현하였다. 실험에서는 소비전력과 초당 처리 가능한 프레임 수를 PC환경과 모바일 GPU 임베디드 환경에서 측정하여 저전력 환경에서도 성별 인식이 가능함을 증명하였다.

    영어초록

    While IoT (Internet of Things) industry has been spreading, it becomes very important for object to recognize user’s information by itself without any control. Above all, gender (male, female) is dominant factor to analyze user’s information on account of social and biological difference between male and female. However since each gender consists of diverse face feature, face-based gender classification research is still in challengeable research field. Also to apply gender classification system to IoT, size of device should be reduced and device should be operated with low power. Consequently, To port the function that can classify gender in real-world, this paper contributes two things. The first one is new gender classification algorithm based on deep learning and the second one is to implement real-time gender classification system in embedded board operated by low power. In our experiment, we measured frame per second for gender classification processing and power consumption in PC circumstance and mobile GPU circumstance. Therefore we verified that gender classification system based on deep learning works well with low power in mobile GPU circumstance comparing to in PC circumstance.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보처리학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 04일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
4:41 오전