• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

지도학습 오토인코더를 이용한 전문어의 범용어 공간 매핑 방법론 (Domain-Specific Terminology Mapping Methodology Using Supervised Autoencoders)

18 페이지
기타파일
최초등록일 2025.05.09 최종저작일 2023.02
18P 미리보기
지도학습 오토인코더를 이용한 전문어의 범용어 공간 매핑 방법론
  • 미리보기

    서지정보

    · 발행기관 : 한국경영정보학회
    · 수록지 정보 : 경영정보학연구 / 25권 / 1호 / 93 ~ 110페이지
    · 저자명 : 윤병호, 김준우, 김남규

    초록

    최근 비정형 자료인 텍스트를 벡터로 변환하고 이를 통해 다양한 목적으로 방대한 양의 자연어를분석하는 시도가 이루어지고 있다. 특히 코퍼스 규모가 제한적일 수밖에 없는 전문적인 도메인의텍스트에 대해서도 분석 수요가 급증하면서, 해당 전문 분야의 문서를 범용 문서와 함께 분석하기위한 연구가 활발하게 이루어지고 있다. 특정 전문어를 해당 전문어 코퍼스 외부의 일반적인 범용어와함께 분석하기 위해서는, 전문어 임베딩 공간을 범용어 임베딩 공간과 일치시키는 것이 필요하다.
    기존에는 변환 행렬 또는 매핑 함수 등을 통해 전문어 코퍼스로부터 얻은 전문어 임베딩 값을 범용어임베딩 공간으로 변환, 일치시키려는 시도가 있었지만, 변환 행렬을 기반으로 하는 선형 변환은 국지적인범위에서만 근사적인 변환 효과가 있다는 일반적인 선형 변환의 한계를 극복하지 못했다. 이러한선형 변환의 한계를 극복하기 위해 최근에는 다양한 형태의 비선형적인 변환 방법이 제안되고 있으며, 본 연구에서는 오토인코더(Autoencoder)와 회귀 모델을 동시에 학습하는 종단형 학습을 통해 전문어임베딩 공간을 범용어 임베딩 공간으로 변환하여 임베딩 공간을 일치시키는 모델을 제안한다. 실제“보건의료” 분야의 R&D 문서에 대해 임베딩 변환 실험을 진행한 결과, 제안 방법론이 기존의오토인코더를 활용한 방법 대비 변환 정확도 측면에서 우수한 성능을 보임을 확인하였다.

    영어초록

    Recently, attempts have been made to convert unstructured text into vectors and to analyze vast amounts of natural language for various purposes. In particular, the demand for analyzing texts in specialized domains is rapidly increasing. Therefore, studies are being conducted to analyze specialized and general- purpose documents simultaneously. To analyze specific terms with general terms, it is necessary to align the embedding space of the specific terms with the embedding space of the general terms. So far, attempts have been made to align the embedding of specific terms into the embedding space of general terms through a transformation matrix or mapping function. However, the linear transformation based on the transformation matrix showed a limitation in that it only works well in a local range.
    To overcome this limitation, various types of nonlinear vector alignment methods have been recently proposed. We propose a vector alignment model that matches the embedding space of specific terms to the embedding space of general terms through end-to-end learning that simultaneously learns the autoencoder and regression model. As a result of experiments with R&D documents in the “Healthcare” field, we confirmed the proposed methodology showed superior performance in terms of accuracy compared to the traditional model.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“경영정보학연구”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 01일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
12:41 오후