• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

밤의 칼날식 박피공정에 따른 머신 러닝 기반 중량감모율 예측 모델 개발 (Development of machine learning prediction model for weight loss rate of chestnut (Castanea crenata) according to knife peeling process)

9 페이지
기타파일
최초등록일 2025.05.07 최종저작일 2024.08
9P 미리보기
밤의 칼날식 박피공정에 따른 머신 러닝 기반 중량감모율 예측 모델 개발
  • 미리보기

    서지정보

    · 발행기관 : 한국정보전자통신기술학회
    · 수록지 정보 : 한국정보전자통신기술학회 논문지 / 17권 / 4호 / 236 ~ 244페이지
    · 저자명 : 김태형, 권기현, 김아나

    초록

    국내 밤 산업은 박피율을 높이기 위한 목적으로 과도한 칼날박피로 인해 과육 손실이 높아 생산 효율성이 저하되는 문제가 있다. 이에 본 연구에서는 밤 박피 공정의 구동 조건 최적화를 위한 기초 연구로 머신러닝 알고리즘 기반 박피공정 단계별 밤의 중량감모율을 예측할 수 있는 모델을 도출하였다. 6개의 제어조건을 바탕으로 51가지 2단 칼날박피기 실험 세팅 조합을 도출하고 이를 3번씩 반복하여 총 153가지의 데이터를 획득하였다. 인공신경망과 랜덤 포레스트 머신러닝 모델을 이용하여 밤 박피 단계별(1단 박피 후, 2단 박피 후, 최종 배출 후) 중량감모율을 예측하는 머신러닝 모델을 도출하였고, R(coefficient of determiantion), nRMSE(normalized root mean square error), MAE(mean absolute error) 값을 통해 모델의 성능을 평가하였다. 모든 박피 단계에서 인공신경망 모델보다 랜덤 포레스트 모델이 높은 R값으로 우수한 예측 정확도를 가지는 것으로 나타났고, 낮은 nRMSE와 MAE값으로 낮은 예측 오차를 가지는 것으로 나타났다. 최종적으로 랜덤 포래스트 예측 모델이 도출되었으며, 실제로 계측된 중량감모율과 예측한 중량감모율의 오차가 미미함을 확인할 수 있었다. 결과적으로, 도출된 모델은 밤 과육의 중량감모율을 최소화하는 동시에 최대 박피율을 도출할 수 있는 최적 박피공정의 구동 조건을 설정하는 데 활용함으로써, 이를 바탕으로 국내 밤 산업에 이바지 할 수 있을 것으로 예상된다.

    영어초록

    A representative problem in domestic chestnut industry is the high loss of flesh due to excessive knife peeling in order to increase the peeling rate, resulting in a decrease in production efficiency. In this study, a prediction model for weight loss rate of chestnut by stage of knife peeling process was developed as undergarment study to optimize conditions of the machine. 51 control conditions of the two-stage blade peeler used in the experiment were derived and repeated three times to obtain a total of 153 data. Machine learning(ML) models including artificial neural network (ANN) and random forest (RF) were implemented to predict the weight loss rate by chestnut peel stage (after 1st peeling, 2nd peeling, and after final discharge). The performance of the models were evaluated by calculating the values of coefficient of determination (R), normalized root mean square error (nRMSE), and mean absolute error (MAE). After all peeling stages, RF model have better prediction accuracy with higher R values and low prediction error with lower nRMSE and MAE values, compared to ANN model. The final selected RF prediction model showed excellent performance with insignificant error between the experimental and predicted values. As a result, the proposed model can be useful to set optimum condition of knife peeling for the purpose of minimizing the weight loss of domestic chestnut flesh with maximizing peeling rate.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국정보전자통신기술학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 10일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
4:38 오후