• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

암 예후를 효과적으로 예측하기 위한 Node2Vec 기반의 유전자 발현량 이미지 표현기법 (A Node2Vec-Based Gene Expression Image Representation Method for Effectively Predicting Cancer Prognosis)

6 페이지
기타파일
최초등록일 2025.05.07 최종저작일 2019.10
6P 미리보기
암 예후를 효과적으로 예측하기 위한 Node2Vec 기반의 유전자 발현량 이미지 표현기법
  • 미리보기

    서지정보

    · 발행기관 : 한국정보처리학회
    · 수록지 정보 : 정보처리학회 논문지 / 8권 / 10호 / 397 ~ 402페이지
    · 저자명 : 최종환, 박상현

    초록

    암 환자에게 적절한 치료계획을 제공하기 위해 암의 진행양상 또는 환자의 생존 기간 등에 해당하는 환자의 예후를 정확히 예측하는 것은 생물정보학 분야에서 다루는 중요한 도전 과제 중 하나이다. 많은 연구에서 암 환자의 유전자 발현량 데이터를 이용하여 환자의 예후를 예측하는 기계학습 모델들이 많이 제안되어 오고 있다. 유전자 발현량 데이터는 약 17,000개의 유전자에 대한 수치값을 갖는 고차원의 수치형 자료이기에, 기존의 연구들은 특징 선택 또는 차원 축소 전략을 이용하여 예측 모델의 성능 향상을 도모하였다. 그러나 이러한 접근법은 특징 선택과 예측 모델의 훈련이 분리되어 있어서, 기계학습 모델은 선별된 유전자들이 생물학적으로 어떤 관계가 있는지 알기가 어렵다. 본 연구에서는 유전자 발현량 데이터를 이미지 형태로 변환하여 예후 예측이 효과적으로 특징 선택 및 예후 예측을 수행할 수 있는 기법을 제안한다. 유전자들 사이의 생물학적 상호작용 관계를 유전자 발현량 데이터에 통합하기 위해 Node2Vec을 활용하였으며, 2차원 이미지로 표현된 발현량 데이터를 효과적으로 학습할 수 있도록 합성곱 신경망 모델을 사용하였다. 제안하는 모델의 성능은 이중 교차검증을 통해 평가되었고, 유전자 발현량 데이터를 그대로 이용하는 기계학습 모델보다 우월한 예후 예측 정확도를 가지는 것이 확인되었다. Node2Vec을 이용한 유전자 발현량의 새로운 이미지 표현법은 특징 선택으로 인한 정보의 손실이 없어 예측 모델의 성능을 높일 수 있으며, 이러한 접근법이 개인 맞춤형 의학의 발전에 이바지할 것으로 기대한다.

    영어초록

    Accurately predicting cancer prognosis to provide appropriate treatment strategies for patients is one of the critical challenges in bioinformatics. Many researches have suggested machine learning models to predict patients’ outcomes based on their gene expression data. Gene expression data is high-dimensional numerical data containing about 17,000 genes, so traditional researches used feature selection or dimensionality reduction approaches to elevate the performance of prognostic prediction models. These approaches, however, have an issue of making it difficult for the predictive models to grasp any biological interaction between the selected genes because feature selection and model training stages are performed independently. In this paper, we propose a novel two-dimensional image formatting approach for gene expression data to achieve feature selection and prognostic prediction effectively. Node2Vec is exploited to integrate biological interaction network and gene expression data and a convolutional neural network learns the integrated two-dimensional gene expression image data and predicts cancer prognosis. We evaluated our proposed model through double cross-validation and confirmed superior prognostic prediction accuracy to traditional machine learning models based on raw gene expression data. As our proposed approach is able to improve prediction models without loss of information caused by feature selection steps, we expect this will contribute to development of personalized medicine.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보처리학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가 요청 쿠폰 이벤트
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 05일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
1:11 오후