• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

수동형/반능동형 RFID 시스템의 태그 충돌 방지 알고리즘 Part Ⅰ : QueryAdjust 명령어를 이용한 AFQ 알고리즘과 Grouping에 의한 성능개선  (Tag Anti-Collision Algorithm in Passive and Semi-passive RFID Systems Part Ⅰ : Adjustable Framed Q Algorithm and Grouping Method by using QueryAdjust Command)

11 페이지
기타파일
최초등록일 2025.05.07 최종저작일 2008.08
11P 미리보기
수동형/반능동형 RFID 시스템의 태그 충돌 방지 알고리즘 Part Ⅰ : QueryAdjust 명령어를 이용한 AFQ 알고리즘과 Grouping에 의한 성능개선 
  • 미리보기

    서지정보

    · 발행기관 : 한국통신학회
    · 수록지 정보 : 한국통신학회논문지 / 33권 / 8호 / 794 ~ 804페이지
    · 저자명 : 송인찬, 범효, 신동범, 이형섭, 장경희

    초록

    본 논문에서는 EPCglobal Class-1 Generation-2 (Gen2) 기반 Probabilistic Slotted 충돌방지 알고리즘에 대하여 살펴보고, 태그인식시간, 충돌 비율을 감소시키고, 데이터 처리량, 시스템 효율을 증가 시킬 수 있는 QueryAdjust 명령어를 사용한 FAFQ (fixed adjustable framed Q) 알고리즘과 AAFQ (adaptive adjustable framed Q) 알고리즘을 제안하며, 또한 Gen2 기반으로 태그 인식 효율을 향상 시킬 수 있는 Grouping 방법을 제안한다. 제안한 방법들 모두 Q 알고리즘의 성능 향상을 보이며, 제안하는 방법 중 AAFQ 알고리즘이 가장 높은 성능 향상을 나타낸다. 즉, AAFQ 알고리즘에 의하여 5% 정도의 시스템 효율 성능 향상과 4.5% 정도의 충돌 비율 감소를 얻을 수 있다. Grouping 방법은 FAFQ 알고리즘과 AAFQ 알고리즘에 대해선 Ungrouping 방법과 비슷한 성능을 보이지만, Gen2 Q 알고리즘의 경우 Ungrouping 방법과 비교 하였을 때 태그인식시간 및 충돌 비율을 감소시키고, 데이터 처리량 및 시스템 효율을 증가 시킨다.

    영어초록

    In this paper, we analyze the performance of probabilistic slotted anti-collision algorithm used in EPCglobal Class-1 Generation-2 (Gen2). To increase throughput and system efficiency, and to decrease tag identification time and collision ratio, we propose new tag anti-collision algorithms, which are FAFQ (fixed adjustable framed Q) algorithm and AAFQ (adaptive adjustable framed Q) algorithm, by using QueryAdjust command. We also propose grouping method based on Gen2 to improve the efficiency of tag identification. The simulation results show that all the proposed algorithms outperform Q algorithm, and AAFQ algorithm performs the best. That is, AAFQ has an increment of 5% of system efficiency and a decrement of 4.5% of collision ratio. For FAFQ and AAFQ algorithm, the performance of grouping method is similar to that of ungrouping method. However, for Q algorithm in Gen2, grouping method can increase throughput and system efficiency, and decrease tag identification time and collision ratio compared with ungrouping method.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국통신학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 01일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
12:41 오후