PARTNER
검증된 파트너 제휴사 자료

템플릿 추적 문제를 위한 효율적인 슬라이딩 윈도우기반 URV Decomposition 알고리즘 (A Fast and Efficient Sliding Window based URV Decomposition Algorithm for Template Tracking)

9 페이지
기타파일
최초등록일 2025.05.06 최종저작일 2019.01
9P 미리보기
템플릿 추적 문제를 위한 효율적인 슬라이딩 윈도우기반 URV Decomposition 알고리즘
  • 미리보기

    서지정보

    · 발행기관 : 한국멀티미디어학회
    · 수록지 정보 : 멀티미디어학회논문지 / 22권 / 1호 / 35 ~ 43페이지
    · 저자명 : 이근섭

    초록

    Template tracking refers to the procedure of finding the most similar image patch corresponding to the given template through an image sequence. In order to obtain more accurate trajectory of the template, the template requires to be updated to reflect various appearance changes as it traverses through an image sequence. To do that, appearance images are used to model appearance variations and these are obtained by the computation of the principal components of the augmented image matrix at every iteration. Unfortunately, it is prohibitively expensive to compute the principal components at every iteration. Thus in this paper, we suggest a new Sliding Window based truncated URV Decomposition (TURVD) algorithm which enables updating their structure by recycling their previous decomposition instead of decomposing the image matrix from the beginning. Specifically, we show an efficient algorithm for updating and downdating the TURVD simultaneously, followed by the rank-one update to the TURVD while tracking the decomposition error accurately and adjusting the truncation level adaptively. Experiments show that the proposed algorithm produces no-meaningful differences but much faster execution speed compared to the typical algorithms in template tracking applications, thereby maintaining a good approximation for the principal components.

    영어초록

    Template tracking refers to the procedure of finding the most similar image patch corresponding to the given template through an image sequence. In order to obtain more accurate trajectory of the template, the template requires to be updated to reflect various appearance changes as it traverses through an image sequence. To do that, appearance images are used to model appearance variations and these are obtained by the computation of the principal components of the augmented image matrix at every iteration. Unfortunately, it is prohibitively expensive to compute the principal components at every iteration. Thus in this paper, we suggest a new Sliding Window based truncated URV Decomposition (TURVD) algorithm which enables updating their structure by recycling their previous decomposition instead of decomposing the image matrix from the beginning. Specifically, we show an efficient algorithm for updating and downdating the TURVD simultaneously, followed by the rank-one update to the TURVD while tracking the decomposition error accurately and adjusting the truncation level adaptively. Experiments show that the proposed algorithm produces no-meaningful differences but much faster execution speed compared to the typical algorithms in template tracking applications, thereby maintaining a good approximation for the principal components.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“멀티미디어학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 05일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
4:36 오전