• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

VGG16을 활용한 미학습 농작물의 효율적인 질병 진단 모델 (An Efficient Disease Inspection Model for Untrained Crops Using VGG16)

7 페이지
기타파일
최초등록일 2025.05.05 최종저작일 2020.12
7P 미리보기
VGG16을 활용한 미학습 농작물의 효율적인 질병 진단 모델
  • 미리보기

    서지정보

    · 발행기관 : 한국시뮬레이션학회
    · 수록지 정보 : 한국시뮬레이션학회 논문지 / 29권 / 4호 / 1 ~ 7페이지
    · 저자명 : 정석봉, 윤협상

    초록

    농작물 질병에 대한 조기 진단은 질병의 확산을 억제하고 농업 생산성을 증대하는 데에 있어 중요한 역할을 하고 있다. 최근 합성곱신경망(convolutional neural network, CNN)과 같은 딥러닝 기법을 활용하여 농작물 잎사귀 이미지 데이터세트를 분석하여 농작물 질병을 진단하는 다수의 연구가 진행되었다. 이와 같은 연구를 통해 농작물 질병을 90% 이상의 정확도로 분류할 수 있지만, 사전 학습된 농작물 질병 외에는 진단할 수 없다는 한계를 갖는다. 본 연구에서는 미학습 농작물에 대해 효율적으로 질병 여부를 진단하는 모델을 제안한다. 이를 위해, 먼저 VGG16을 활용한 농작물 질병 분류기(CDC)를 구축하고 PlantVillage 데이터세트을 통해 학습하였다. 이어 미학습 농작물의 질병 진단이 가능하도록 수정된 질병 분류기(mCDC)의 구축방안을 제안하였다. 실험을 통해 본 연구에서 제안한 수정된 질병 분류기(mCDC)가 미학습 농작물의 질병 진단에 대해 기존 질병 분류기(CDC)보다 높은 성능을 보임을 확인하였다.

    영어초록

    Early detection and classification of crop diseases play significant role to help farmers to reduce disease spread and to increase agricultural productivity. Recently, many researchers have used deep learning techniques like convolutional neural network (CNN) classifier for crop disease inspection with dataset of crop leaf images (e.g., PlantVillage dataset). These researches present over 90% of classification accuracy for crop diseases, but they have ability to detect only the pre-trained diseases. This paper proposes an efficient disease inspection CNN model for new crops not used in the pre-trained model. First, we present a benchmark crop disease classifier (CDC) for the crops in PlantVillage dataset using VGG16. Then we build a modified crop disease classifier (mCDC) to inspect diseases for untrained crops. The performance evaluation results show that the proposed model outperforms the benchmark classifier.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국시뮬레이션학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 23일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
1:32 오후