PARTNER
검증된 파트너 제휴사 자료

대장 종양 분류를 위한 샘 구조물 자동 분할 알고리즘 (An Automatic Segmentation Algorithm for Colonic Glandular Lesions)

10 페이지
기타파일
최초등록일 2025.05.04 최종저작일 2018.06
10P 미리보기
대장 종양 분류를 위한 샘 구조물 자동 분할 알고리즘
  • 미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회논문지 / 45권 / 6호 / 554 ~ 563페이지
    · 저자명 : 조미경, 이혜경, 조환규

    초록

    대장의 선종 및 선암은 가장 흔한 종양 중 하나로 주로 샘 구조물의 구조적 외관과 세포형태의 변화에 기초하여 진단이 이루어진다. 이러한 진단은 각 병리의사의 주관과 객관에 의하며 좀 더 나은 객관적 결과와 재현성을 위해 샘 구조물에서 의미 있는 특징을 추출하고자 하는 많은 연구가 진행 중이다.
    샘 구조물의 특징을 추출하기 위해 샘 구조물을 수동적으로 분할하는 것은 노동집약적인 작업으로 많은 시간과 때로는 어려움이 발생한다. 이러한 문제점들로 인해 샘 구조물의 형태를 정량화하기 위한 자동화된 접근법이 필요하다. 본 논문에서는 샘 구조물의 형태를 정량화하기 위해 정상과 변형이 시작된 초기 단계의 샘 구조물을 분할하기 위한 알고리즘을 개발하였다. 알고리즘은 k-means 클러스터링에 의해 얻은 적응적 임계값을 순차적으로 적용하여 이진화작업과 필터링 작업을 수행하고 그 결과로 얻은 이미지의 경계선을 추출하고 결합하여 샘 구조물의 바깥쪽 방향과 안쪽 방향 모두에서 샘 구조물을 찾아가는 방식으로 분할한다. 제안된 알고리즘을 병원에서 사용하는 영상에 적용한 결과 95%이상의 정확도를 보여주었다. 또한 레벨 셋 기반 알고리즘에 비해 수행속도가 현저히 빠르므로 매우 실용적인 알고리즘이라고 할 수 있다.

    영어초록

    Adenoma and adenocarcinoma of the colon are one of the most common tumors, and diagnoses are based mainly on the structural appearances and changes in cell morphology of the glandular structures. Each diagnosis is based on subjectivity and objectivity of each pathologist, and many studies are under way to extract meaningful features from the glandular structure for better objective results and reproducibility. Passive segmentation of glandular cells to extract structural features is a labor-intensive task performed over many hours and with some difficulties. These problems require an automated approach to quantify the shapes of glandular cells. In this paper, we have developed an algorithm for segmentation of glandular cells to quantify their shapes in the benign and initial stages of deformation signifying the onset of disease. The algorithm sequentially applies adaptive thresholds obtained by k-means clustering and obtains binary images by thresholding and filtering methods. We extract boundary information from binary images and combine several boundary information, and then we search for glandular cells, both in the outward direction and inward direction from the boundary information. Applying the proposed algorithm to clinical images showed more than 95% accuracy. In addition, it is a very practical algorithm because it is much faster than the level-set based algorithms.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보과학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 03일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
9:22 오후