• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

Profiling Chinese Fashion Shoppers in Beijing: Mall Activities, Shopping Outcome, and Demographics

한국학술지에서 제공하는 국내 최고 수준의 학술 데이터베이스를 통해 다양한 논문과 학술지 정보를 만나보세요.
9 페이지
기타파일
최초등록일 2025.05.04 최종저작일 2011.02
9P 미리보기
Profiling Chinese Fashion Shoppers in Beijing: Mall Activities, Shopping Outcome, and Demographics
  • 미리보기

    서지정보

    · 발행기관 : 한국마케팅과학회
    · 수록지 정보 : Journal of Global Fashion Marketing / 2권 / 1호 / 11 ~ 19페이지
    · 저자명 : Hong Yu

    초록

    China’s burgeoning consumer market has drawn increased attentionfrom the global business community. With the Chineseeconomy boasting an average growth rate of 9.9% per yearsince 1981, the country’s retail sales continue to gainmomentum. In 2006, China’s retail revenue totalled about $860billion-the seventh-largest market in the world-and this figureis projected to grow to $2.4 trillion by 2020 (Special Report:Ready for Warfare, 2006). The red-hot Chinese market has attractedglobal retailers and property developers who are keento seize this unprecedented opportunity. Foremost among suchretail development in China since the late 1980s is the emergenceof modern regional and mega shopping centers (Li,Zhou, and Zhuang, 2003).
    While the concept of the shopping mall is quite differentfrom traditional retail practices in China, Chinese people haveembraced the convenience of mall shopping (Chen, 2007).
    During the recent global financial crisis, Chinese consumers’spending power has become a major driver of the country’seconomic growth, even as the developed world’s own economiescontinue to struggle (Cavender, 2010). Nevertheless, misconceptionsabout Chinese shoppers are prevalent (Cavender,2010) and few studies focus on Chinese consumer behavior ina shopping mall environment (Li et al., 2003). This study intendsto fill the gap and to expand the understanding ofChinese mall shoppers. Specifically, the researcher exploredsegmentation of mall shoppers by fashion orientation, and examinedshopping values, mall activities, expenditures, and demographiccharacteristics across the segments.
    The researcher used an intercept survey method for data collectionin a newly established mega shopping mall in Beijingwhose clientele fits middle to upper class profiles. Trainedgraduate students collected data using a mall intercept surveyprocedure adapted from Sudman (1980). A total of 296 completedquestionnaires were included in the data analysis. Thesample consisted of 87 male (29.0%) and 209 female (69.7%)shoppers. About 30% were between the ages of 18-25, 11%were 41-60 years of age, and the rest (57%) were 26-40 yearsof age. The majority (66.3%) had earned a Bachelor’s degree;61.3% were employed; and about 4% were retired. The questionnaire included items measuring fashion orientation(Gutman and Mills, 1982), shopping value (Babin,Darden, and Griffin, 1994), mall activities (Bloch, Ridgway,and Dawson, 1994), as well as other demographic informationand total customer expenditures during the mall visit. Thequestionnaire was translated into Chinese and back-translatedinto English by bilingual experts to ensure validity. Exploratoryfactor analyses using principle component extraction and varimaxrotation were performed on fashion orientation and shoppingvalue. Cluster analysis using fashion orientation as thevariable included three steps: Firstly, hierarchical cluster analysisusing Ward’s method was conducted; secondly, K-meanscluster analysis was performed with the cluster centers fromthe hierarchical results as the initial seed points; and finally,ANOVA and Chi-square tests were used to compare across theclusters.
    Factor analysis on fashion orientation resulted in three factors:Fashion Interest and Leadership (alpha=.92); Importanceof Being Well-Dressed (alpha=.83); and Anti-Fashion Attitude(alpha=.48). Factor analysis on shopping value scale yieldedtwo dimensions: Hedonic Value (alpha=.81) and UtilitarianValue (alpha=.50). Items with alpha coefficients above 0.70 areconsidered acceptable in reliability and they were summated intoa single score; for those with alpha coefficients lower than0.70, a single item with the highest factor loading was used torepresent the factor dimension in further analyses (Jin andKim, 2003).
    Cluster analysis suggests three clusters: Fashion Leaders(N=74, 26.7%); Independents (N=105, 37.9%); and Uninvolveds(N=98, 35.4%). These groups partially matched Gutman andMills’s (1982) findings on clothing fashion lifestyle segments.
    ANOVA and Chi-square tests show significant group differencesin shopping value, mall activities, and the groups’ demographicprofiles.
    Results indicate that the Fashion Leaders and Independentsderived a significantly higher level of hedonic value than theUninvolveds. The Uninvolveds and Fashion Leaders derived asignificantly higher level of utilitarian value from shopping atthe mall than the Independents. With regards to mall activities,the three groups were similar in consumption of the mall (e.g.,walking in the mall for exercise), passing time, and consumptionof services, but were significantly different in consumptionof products; in particular, the Fashion Leaders andIndependents made more unplanned purchases than theUninvolveds. In terms of demographics, the Fashion Leadersand Independents groups had larger percentages of females,while the Uninvolveds group had nearly equal representation of male and female shoppers. The Fashion Leaders andIndependents were relatively younger and included more respondentswith Bachelor’s degrees. The Uninvolveds weremore likely to be employed or retired. Total expenditure duringthe mall visit and monthly income levels were not significantlydifferent among the three groups. Based on the findings,implications for mall developers and retailers arediscussed.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 09일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
11:08 오후