• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

문헌범주화에서 학습문헌수 최적화에 관한 연구 (Optimization of Number of Training Documents in Text Categorization)

18 페이지
기타파일
최초등록일 2025.05.03 최종저작일 2006.12
18P 미리보기
문헌범주화에서 학습문헌수 최적화에 관한 연구
  • 미리보기

    서지정보

    · 발행기관 : 한국정보관리학회
    · 수록지 정보 : 정보관리학회지 / 23권 / 4호 / 277 ~ 294페이지
    · 저자명 : 심경

    초록

    본 연구는 실재 시스템 환경에서 문헌 분류를 위해 범주화 기법을 적용할 경우, 범주화 성능이 어느 정도이며, 적정한 문헌범주화 성능의 달성을 위하여 분류기 학습에 필요한 범주당 가장 이상적인 학습문헌집합의 규모는 무엇인가를 파악하기 위하여 kNN 분류기를 사용하여 실험하였다. 실험문헌집단으로15만 여건의 실제 서비스되는 데이터베이스에서 2,556건 이상의 문헌을 가진 8개 범주를 선정하였다. 이들을 대상으로 범주당 학습문헌수 20개(Tr20)에서 2,000개(Tr2000)까지 단계별로 증가시키며 8개 학습문헌집합 규모를 갖도록 하위문헌집단을 구성한 후, 학습문헌집합 규모에 따른 하위문헌집단 간 범주화 성능을 비교하였다. 8개 하위문헌집단의 거시평균 성능은 F1 값 30%로 선행연구에서 발견된 kNN 분류기의 일반적인 성능에 미치지 못하는 낮은 성능을 보였다. 실험을 수행한 8개 대상문헌집단 중 학습문헌수가 100개인 Tr100 문헌집단이 F1 값 31%로 비용대 효과면에서 분류기 학습에 필요한 최적정의 실험문헌집합수로 판단되었다. 또한, 실험문헌집단에 부여된 주제범주 정확도를 수작업 재분류를 통하여 확인한 후, 이들의 범주별 범주화 성능과 관련성을 기반으로 위 결론의 신빙성을 높였다.

    영어초록

    This paper examines a level of categorization performance in a reallife collection of abstract articles in the fields of science and technology, and tests the optimal size of documents per category in a training set using a kNN classifier. The corpus is built by choosing categories that hold more than 2,556 documents first, and then 2,556 documents per category are randomly selected. It is further divided into eight subsets of different size of training documents: each set is randomly selected to build training documents ranging from 20 documents (Tr20) to 2,000 documents (Tr2000) per category. The categorization performances of the 8 subsets are compared. The average performance of the eight subsets is 30% in F1 measure which is relatively poor compared to the findings of previous studies. The experimental results suggest that among the eight subsets the Tr100 appears to be the most optimal size for training a kNN classifier. In addition, the correctness of subject categories assigned to the training sets is probed by manually reclassifying the training sets in order to support the above conclusion by establishing a relation between and the correctness and categorization performance.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보관리학회지”의 다른 논문도 확인해 보세요!

찾으시던 자료가 아닌가요?

지금 보는 자료와 연관되어 있어요!
왼쪽 화살표
오른쪽 화살표
문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 04일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
3:58 오후