• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

뉴로모픽 구조 기반 FPGA 임베디드 보드에서 이미지 분류 성능 향상을 위한 특징 표현 방법 연구 (Feature Representation Method to Improve Image Classification Performance in FPGA Embedded Boards Based on Neuromorphic Architecture)

12 페이지
기타파일
최초등록일 2025.05.01 최종저작일 2021.12
12P 미리보기
뉴로모픽 구조 기반 FPGA 임베디드 보드에서 이미지 분류 성능 향상을 위한 특징 표현 방법 연구
  • 미리보기

    서지정보

    · 발행기관 : 한국소프트웨어감정평가학회
    · 수록지 정보 : 한국소프트웨어감정평가학회 논문지 / 17권 / 2호 / 161 ~ 172페이지
    · 저자명 : 정재혁, 정진만, 윤영선

    초록

    뉴로모픽 아키텍처는 저에너지로 인공지능 기술을 지원하는 차세대 컴퓨팅으로 주목받고 있다. 그러나 뉴로모픽 아키텍처 기반의 FPGA 임베디드 보드는 크기나 전력 등으로 인하여 가용 자원이 제한된다. 본 논문에서는 제한된 자원을 효율적으로 사용하기 위해 특징점의 고려 없이 크기를 재조정하는 보간법과 에너지 기반으로 특징점을 최대한 보존하는 DCT(Discrete Cosine Transform) 기법을 통한 특징 표현 방법을 비교 및평가한다. 크기가 조정된 이미지는 일반적인 PC 환경에서와 FPGA 임베디드 보드의 Nengo 프레임워크에서컨벌루션 신경망을 통해 정확도를 비교 분석했다. 실험 결과 PC의 컨벌루션 신경망과 FPGA Nengo 환경 모두에서 DCT 기반 분류 성능이 일반 보간법보다 약 1.9% 높은 성능을 보였다. 실험 결과를 바탕으로 뉴로모픽 구조 기반 FPGA 보드의 제한된 자원 환경에서 기존에 사용되던 보간법 대신 DCT 방식을 이용한다면 분류에 사용되는 뉴런의 표현에 많은 자원을 할당하여 인식률을 높일 수 있을 것으로 기대한다.

    영어초록

    Neuromorphic architecture is drawing attention as a next-generation computing that supports artificial intelligence technology with low energy. However, FPGA embedded boards based on Neuromorphic architecturehave limited resources due to size and power. In this paper, we compared and evaluated the image reduction method using the interpolation method that rescales the size without considering the feature points and the DCT (Discrete Cosine Transform) method that preserves the feature points as much as possible based on energy. The scaled images were compared and analyzed for accuracy through CNN (Convolutional Neural Networks) in a PC environment and in the Nengo framework of an FPGA embedded board.. As a result of the experiment, DCT based classification showed about 1.9% higher performance than that of interpolation representation in both CNN and FPGA nengo environments. Based on the experimental results, when the DCT method is used in a limited resource environment such as an embedded board, a lot of resources are allocated to the expression of neurons used for classification, and the recognition rate is expected to increase.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국소프트웨어감정평가학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 31일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
3:31 오전