• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

사용자 리뷰 데이터를 활용한 모바일 어플리케이션 서비스 평가 척도 개선 (Improving evaluation metric of mobile application service with user review data)

7 페이지
기타파일
최초등록일 2025.05.01 최종저작일 2020.01
7P 미리보기
사용자 리뷰 데이터를 활용한 모바일 어플리케이션 서비스 평가 척도 개선
  • 미리보기

    서지정보

    · 발행기관 : 한국산학기술학회
    · 수록지 정보 : 한국산학기술학회논문지 / 21권 / 1호 / 380 ~ 386페이지
    · 저자명 : 이범국, 손창호

    초록

    모바일 어플리케이션 시장은 스마트폰의 등장 이후로 지난 10여 년의 성장을 통해 전자기기 소프트웨어 시장에서 가장 큰 시장을 보유하게 되었다. 모바일 어플리케이션 시장의 경쟁이 심화됨에 따라, 사용자의 소비와 사용 양태에 어플리케이션 평가가 끼치는 영향력 역시 큰 폭으로 상승하였다. 이에 따라 모바일 어플리케이션을 평가하기 위한 척도에 관한 연구들이 진행됐으나, 대부분의 연구가 전문가 중심의 인터뷰 또는 설문조사와 같은 정성적인 방법에 의존하였다. 또한, 서비스 사용자의 관점이 아닌 서비스 제공자의 관점에서 평가 척도가 구성되고 있다. 하지만 최근에는 대량의 사용자 리뷰(User Review) 데이터를 통해 실제 사용자들의 어플리케이션 평가의 정량적 분석이 가능해짐에 따라, 연구자의 주관성을 최소화하는 어플리케이션 영역별 분석의 가능성이 커지고 있다. 따라서 본 연구에서는 사용자 리뷰 데이터를 활용하여 모바일 어플리케이션들에 대한 기존의 품질 평가에 대한 문제점을 보완할 수 있는 방법론을 제시하고자 한다. 이를 위해 토픽모델링 기법인 LDA(Latent Dirichlet allocation)을 적용하여, 기존의 평가 척도를 사용자 관점에서 개선하는 방법을 제안한다. 본 연구를 통해 서비스 제공자 및 연구자의 주관성으로 인한 서비스 평가의 편향을 줄이고, 소비자 관점의 모바일 어플리케이션 영역별 평가 척도를 제공할 것으로 예상된다.

    영어초록

    The mobile application market has grown over the past decade since the advent of smartphones, making it the largest market for electronic device software. As competition intensifies in the mobile application market, the impact of application evaluations on the consumption and usage patterns of users has also significantly increased. Therefore, research has been conducted on measures to evaluate mobile applications, but most of the research has relied on qualitative methods such as expert-centered interviews or surveys. In addition, evaluation measures are being constructed from the service provider's perspective, not from the service user's perspective. However, the possibility of application-specific analyses that minimize the subjectivity of researchers is growing, as large amounts of user review data enable quantitative analysis of actual users' assessment of applications. Therefore, this study presents a methodology that can complement current problems with existing quality assessments for mobile applications by utilizing user review data. To this end, the Topic Modeling technique LDA (Latent Dirichlet allocation) is applied in order to elucidate ways to improve existing evaluation measures from a user's perspective. The study is expected to reduce bias in service assessment due to the subjectivity of service providers and researchers as well as provide a measure of assessment by area of mobile applications from a consumer perspective.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국산학기술학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가 요청 쿠폰 이벤트
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 04일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
9:27 오전