• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

혼합 가우시안 모델과 민쉬프트 필터를 이용한 깊이 맵 부호화 전처리 기법 (Depth Map Pre-processing using Gaussian Mixture Model and Mean Shift Filter)

9 페이지
기타파일
최초등록일 2025.04.29 최종저작일 2011.05
9P 미리보기
혼합 가우시안 모델과 민쉬프트 필터를 이용한 깊이 맵 부호화 전처리 기법
  • 미리보기

    서지정보

    · 발행기관 : 한국정보통신학회
    · 수록지 정보 : 한국정보통신학회논문지 / 15권 / 5호 / 1155 ~ 1163페이지
    · 저자명 : 박성희, 유지상

    초록

    본 논문에서는 깊이 맵(depth map)에 대한 효율적인 부호화를 위하여 전처리 기법을 제안한다. 현재 3차원 비디오 부호화(3D video coding : 3DVC)에 대한 표준화가 진행 중에 있지만 아직 깊이 맵의 부호화 방법에 대한 표준은 확정되지 않은 상태이다. 제안하는 기법에서는 먼저 입력된 깊이 맵의 히스토그램 분포를 가우시안 혼합모델(Gaussian mixture model : GMM) 기반의 EM(expectation maximization) 군집화 기법을 이용하여 분리한다. 분리된 히스토그램을 기반으로 깊이 맵을 여러 개의 레이어로 분리하게 된다. 분리된 각각의 레이어에서 배경과 객체의 포함 여부에 따라 다른 조건의 민쉬프트 필터(mean shift filter)를 적용한다. 결과적으로 영상내의 각 영역 경계는 최대한 살리면서 영역내의 화소 값에 대해서는 평균 연산을 취하여 부호화시 효율을 극대화 하고자 하였다. 다양한 실험영상에 대하여 제안한 기법을 적용한 깊이 맵을 부호화하여 비트율(bit rate)이 감소하고 부호화 시간도 다소 줄어드는 것을 확인 할 수 있었다.

    영어초록

    In this paper, we propose a new pre-processing algorithm applied to depth map to improve the coding efficiency. Now, 3DV/FTV group in the MPEG is working for standard of 3DVC(3D video coding), but compression method for depth map images are not confirmed yet. In the proposed algorithm, after dividing the histogram distribution of a given depth map by EM clustering method based on GMM, we classify the depth map into several layered images. Then, we apply different mean shift filter to each classified image according to the existence of background or foreground in it. In other words, we try to maximize the coding efficiency while keeping the boundary of each object and taking average operation toward inner field of the boundary. The experiments are performed with many test images and the results show that the proposed algorithm achieves bits reduction of 19% ~ 20% and computation time is also reduced.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국정보통신학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가 요청 쿠폰 이벤트
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 02일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
10:29 오후