• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

피처 프레임 구성 방안에 따른 피처 맵 압축 효율 및 머신 태스크 성능 분석 (Analysis of Feature Map Compression Efficiency and Machine Task Performance According to Feature Frame Configuration Method)

14 페이지
기타파일
최초등록일 2025.04.29 최종저작일 2022.05
14P 미리보기
피처 프레임 구성 방안에 따른 피처 맵 압축 효율 및 머신 태스크 성능 분석
  • 미리보기

    서지정보

    · 발행기관 : 한국방송∙미디어공학회
    · 수록지 정보 : 방송공학회 논문지 / 27권 / 3호 / 318 ~ 331페이지
    · 저자명 : 이성배, 이민석, 김규헌

    초록

    최근 하드웨어 연산 장치와 소프트웨어 기반 프레임워크의 발전으로 딥러닝 네트워크를 활용한 머신 태스크가 다양한 산업 분야 및 개인 IoT 장비에서의 활용이 기대되고 있다. 그러나 딥러닝 네트워크를 구동하기 위한 장치의 고비용 문제와 서버에서 머신 태스크 결과만을 전송받을 때 사용자가 요구하는 결과를 받지 못할 수 있다는 제한 사항을 극복하기 위하여 Collaborative Intelligence (CI)에서는 피처 맵의 전송을 그 해결 방법으로 제시하였다. 본 논문에서는 CI 패러다임을 지원하기 위하여 방대한 데이터 크기를 갖는 피처 맵의 효율적인 압축 방법을 실험을 통해 분석 및 제시하였다. 해당 방법은 전통적인 비디오 코덱에서의 압축 효율을 높이기 위하여 피처 맵의 재정렬을 적용하여 중복성을 높였으며, 정지 영상 압축 포맷과 동영상 압축 포맷을 동시에 활용하여 압축 효율을 높이고 머신 태스크의 성능을 유지하는 피처 맵 방법을 제시하였다. 본 논문에서는 이와 같은 방법의 분석을 통해 MPEG-VCM의 피처 압축 앵커 대비 BPP와 mAP의 BD-rate에서 14.29%의 성능이 향상됨을 검증하였다.

    영어초록

    With the recent development of hardware computing devices and software based frameworks, machine tasks using deep learning networks are expected to be utilized in various industrial fields and personal IoT devices. However, in order to overcome the limitations of high cost device for utilizing the deep learning network and that the user may not receive the results requested when only the machine task results are transmitted from the server, Collaborative Intelligence (CI) proposed the transmission of feature maps as a solution. In this paper, an efficient compression method for feature maps with vast data sizes to support the CI paradigm was analyzed and presented through experiments. This method increases redundancy by applying feature map reordering to improve compression efficiency in traditional video codecs, and proposes a feature map method that improves compression efficiency and maintains the performance of machine tasks by simultaneously utilizing image compression format and video compression format. As a result of the experiment, the proposed method shows 14.29% gain in BD-rate of BPP and mAP compared to the feature compression anchor of MPEG-VCM.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“방송공학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 19일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
12:11 오전