PARTNER
검증된 파트너 제휴사 자료

초점 영상 및 비초점 영상으로부터 깊이맵을 생성하는 방법 (Depth Map Generation Using Infocused and Defocused Images)

10 페이지
기타파일
최초등록일 2025.04.29 최종저작일 2014.05
10P 미리보기
초점 영상 및 비초점 영상으로부터 깊이맵을 생성하는 방법
  • 미리보기

    서지정보

    · 발행기관 : 한국방송∙미디어공학회
    · 수록지 정보 : 방송공학회 논문지 / 19권 / 3호 / 362 ~ 371페이지
    · 저자명 : 사이드마흐모드포어, 김만배

    초록

    카메라 초점에 의해 발생하는 흐림(blur)의 변화는 깊이값을 측정하는데 사용한다. DFD(Depth from Defocus)는 깊이값과 흐림의 비례 관계를 이용하여 흐림의 양을 측정하는 기술이다. 기존 DFD 방법은 입력으로 두 장의 비초점 영상(defocused image)을 사용하는데, 기술적인 문제로 낮은 품질의 복원된 초점 영상(infocused image)과 깊이맵을 얻고 있다. 상기 문제점을 해결하는 방법으로 초점 영상과 비초점 영상을 이용함으로써 복원된 초점 영상의 품질 저하를 해결한다. 제안 방법에서는 Subbaro가 제안한 DFD 방법에 새로운 에지 흐림 측정 방법을 결합하여 보다 정확한 흐림 값을 구한다. 또한 명암의 변화가 적은 영역에서는 흐림의 양을 측정하기가 어렵기 때문에, 관심맵(saliency)을 이용하여 비에지 영역을 채울 수 있도록 하였다. 실험에서는 초점 조절 기능이 있는 카메라로부터 20 장의 2K FHD 해상도의 초점 및 비초점 영상을 생성한 후에 제안 방법을 이용하여 깊이맵을 생성하고, 마지막으로 입력 초점 영상과 깊이맵으로부터 3D 입체영상을 제작하였다. 3D 모니터로 시청한 결과 안정된 3D 공간감과 입체감을 얻을 수 있었다.

    영어초록

    Blur variation caused by camera de-focusing provides a proper cue for depth estimation. Depth from Defocus (DFD) technique calculates the blur amount present in an image considering that blur amount is directly related to scene depth. Conventional DFD methods use two defocused images that might yield the low quality of an estimated depth map as well as a reconstructed infocused image. To solve this, a new DFD methodology based on infocused and defocused images is proposed in this paper. In the proposed method, the outcome of Subbaro’s DFD is combined with a novel edge blur estimation method so that improved blur estimation can be achieved. In addition, a saliency map mitigates the ill-posed problem of blur estimation in the region with low intensity variation. For validating the feasibility of the proposed method, twenty image sets of infocused and defocused images with 2K FHD resolution were acquired from a camera with a focus control in the experiments. 3D stereoscopic image generated by an estimated depth map and an input infocused image could deliver the satisfactory 3D perception in terms of spatial depth perception of scene objects.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“방송공학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 08일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
12:55 오전