• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

도로 교통망에서 로컬 차분 프라이버시를 적용한 사용자의 민감한 부분경로 보호 기법 (A Technique of Protecting User Sensitive Partial Trajectory with Local Differential Privacy on the Road Network)

7 페이지
기타파일
최초등록일 2025.04.28 최종저작일 2020.07
7P 미리보기
도로 교통망에서 로컬 차분 프라이버시를 적용한 사용자의 민감한 부분경로 보호 기법
  • 미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회논문지 / 47권 / 7호 / 693 ~ 699페이지
    · 저자명 : 김재원, 박석

    초록

    오늘날 스마트폰의 보급과 센서 기술의 발달에 따라 모바일 기기로부터 수집된 사용자 위치 데이터의 나열인 경로 데이터가 마케팅이나 효율적인 알고리즘 개발에 활용되고 있다. 그러나 이와 같은 위치정보의 무분별한 수집은 사용자 개인의 프라이버시 침해 문제를 야기할 수 있다. 이를 해결하기 위해 위치 정보에 차분 프라이버시를 적용하기 위한 많은 기법이 나왔으나, 경로 정보의 경우 이 방법들을 그대로 적용한다면 유용성이 매우 하락한다는 단점이 있다. 또한, 차분 프라이버시 기법은 큐레이터 모델과 로컬 모델로 나뉘는데, 로컬 모델은 신뢰할 수 있는 서버를 두지 않아도 된다는 장점이 있어 안전하지만 더 많은 노이즈가 삽입되어 데이터 유용성을 더욱 하락시킨다. 본 논문은 로컬 모델에서의 도로교통망 경로 데이터 수집 시 차분 프라이버시를 적용할 때, 데이터 유용성 하락 문제를 해결하기 위해 정점들을 집중점(Heavy point)과 경점(Light point)로 구분하고, 차등적으로 차분 프라이버시 기법을 적용하는 방법을 제안한다. 또한, 실험을 통해 제안 기법이 민감한 데이터는 차분 프라이버시 기준에 맞춰 보호하면서도 전체적인 데이터 유용성 하락을 완화하였음을 보인다.

    영어초록

    Today, with the proliferation of smartphones and the development of sensor technology, path data, a list of user location data collected from mobile devices, is being manipulated for marketing or efficient algorithm development. However, such indiscriminate collection of location information may cause personal privacy leakage issues. To resolve the problem, many differential privacy techniques have been proposed. However, the previous methods significantly degrade query accuracy if they are applied in the trajectory dataset. Additionally, the differential privacy technique is classified into a curator model and a local model. The local model has advantages of not having a reliable server, but suffers from more noise inserted to reduce query accuracy. This paper classifies vertices into heavy points and light points to resolve the problem of data usability in applying differential privacy to collect road network trajectory data in the local model. Additionally, experiments show that the proposed technique mitigates the degradation of overall data usability while protecting the sensitive data in accordance with the differential privacy standards.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보과학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 30일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
5:28 오전