PARTNER
검증된 파트너 제휴사 자료

중규모수치예보자료의 정량적 강수추정량 개선을 위한 인공신경망기법 (Application of Artificial Neural Network to Improve Quantitative Precipitation Forecasts of Meso-scale Numerical Weather Prediction)

11 페이지
기타파일
최초등록일 2025.04.28 최종저작일 2011.02
11P 미리보기
중규모수치예보자료의 정량적 강수추정량 개선을 위한 인공신경망기법
  • 미리보기

    서지정보

    · 발행기관 : 한국수자원학회
    · 수록지 정보 : 한국수자원학회 논문집 / 44권 / 2호 / 97 ~ 107페이지
    · 저자명 : 강부식, 이봉기

    초록

    수문학적 예측에 있어서 강우수치예보의 활용성을 제고하기 위하여 인공신경망을 이용한 정량강수예측기법을 제시하였다. 본 연구에서는 2001년 6월과 7월, 2002년 8월의 중규모수치예보자료와 AWS의 3시간 누적강수, 상층기상관측소에서의 가강수량과 상대습도, 각 선행시간별 강수발생확률을 이용하여 각 선행시간에 따른 강수량을 예측하였다. 강수는 대기변수의 물리적 비선형조합으로 발생하기 때문에 강수에 영향을 미치는 대기변수와 관측강수사이의 비선형관계를 고려하는데 유용한 인공신경망기법을 이용하였다. 인공신경망의 구조는 전방향 다층퍼셉트론(feedforward multi-layer perceptron)을 선택하였으며, 신경망의 학습 시 음의 강수모의값을 고려하여 무강수로 전환하기 위하여 비선형 양극 활성화함수를 사용하였다. 중규모수치예보모형과 인공신경망에서 예측된 강수량은 Nash-Sutcliffe Coefficient of Efficiency(NS-COE)와 Coefficient of Correlation(CORR)로 선행시간별로 통계분석을 실시하였다. 3시간 누적강수를 기준으로 NS는 한반도영역에서 평균적으로 선행시간이 12hr인 경우 -0.04에서 0.31로, 선행시간이 24hr인 경우 -0.04에서 0.38로, 선행시간이 36hr인 경우 -0.03에서 0.33으로, 선행시간이 48hr인 경우 -0.05에서 0.27로 증가하여, 강수예측의 정확도가 향상됨을 확인할 수 있었다.

    영어초록

    For the purpose of enhancing usability of NWP(Numerical Weather Prediction), the quantitative precipitation prediction scheme was suggested. In this research, precipitation by leading time was predicted using 3-hour rainfall accumulation by meso-scale numerical weather model and AWS(Automatic Weather Station), precipitation water and relative humidity observed by atmospheric sounding station, probability of rainfall occurrence by leading time in June and July, 2001 and August, 2002. Considering the nonlinear process of ranfall producing mechanism, the ANN(Artificial Neural Network) that is useful in nonlinear fitting between rainfall and the other atmospheric variables. The feedforward multi-layer perceptron was used for neural network structure, and the nonlinear bipolaractivation function was used for neural network training for converting negative rainfall into no rain value. The ANN simulated rainfall was validated by leading time using Nash-Sutcliffe Coefficient of Efficiency(COE) and Coefficient of Correlation (CORR). As a result, the 3 hour rainfall accumulation basis shows that the COE of the areal mean of the Korean peninsula was improved from -0.04 to 0.31 for the 12hr leading time, -0.04 to 0.38 for the 24hr leading time, -0.03 to 0.33 for the 36hr leading time, and -0.05 to 0.27 for the 48hr leading time.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 07일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
4:02 오전