• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

적설량 예측을 위한 신경망 및 다중회귀 모형의 적용성 평가 (Evaluation for Snowfall Depth Forecasting using Neural Network and Multiple Regression Models)

12 페이지
기타파일
최초등록일 2025.04.28 최종저작일 2013.04
12P 미리보기
적설량 예측을 위한 신경망 및 다중회귀 모형의 적용성 평가
  • 미리보기

    서지정보

    · 발행기관 : 한국방재학회
    · 수록지 정보 : 한국방재학회논문집 / 13권 / 2호 / 269 ~ 280페이지
    · 저자명 : 김연수, 강나래, 김수전, 김형수

    초록

    적설량은 기상변수들의 복잡한 비선형 조합으로 발생하기 때문에 적설량에 영향을 미치는 온도, 강수량, 적설량의 비선형 과정들을 고려할 수 있는 신경망 모형과 통계적 기법인 다중회귀 모형을 이용하여 적설량 예측 모형을 구성하였다. 관측시점부터1999년까지의 관측된 기온, 강수량, 적설량을 이용하여 지점별로 예측모형을 구성하였고, 2000년부터 2011년까지의 지점별 기온, 강수량을 통해 적설량 산정과 관측 자료와의 통계분석을 실시하였으며, 이 중 상관계수와 수정결정계수가 높은 모형을 채택하였다. 채택된 모형의 상관계수는 0.700~0.949로 매우 높은 관계를 나타냈으며, 수정결정계수는 41.7%~89.8%로 적설량의 총 변동을 설명하였다. 대부분의 지점에서 신경망 모형의 적용성이 우수한 것으로 나타났으나, 학습기간에서 관측자료의 부족, 예측기간 중 학습되지 않은 극값의 발생 등에 의해 울진, 대전, 부산, 목포의 경우 신경망 보다 다중회귀 모형의 적용성이 더 높게산정되었다. 본 연구를 통하여 기온 및 강수량을 이용한 적설량 예측이 가능함을 확인하였으며, 기상자료의 비선형과정을 고려할 수 있는 신경망 모형을 적용하는 것이 기존의 통계적 모형을 이용한 예측보다 적용성이 높은 것으로 분석되었다.

    영어초록

    Since snowfall is related to various meteorological variables such as temperature and precipitation, it is generated in nonlinear manner. Therefore this study constructs snowfall forecasting model using neural networks and multiple regression which can consider nonlinear process of snowfall. The study constructs the forecasting models for each station using temperature, precipitation, and snowfall depth observed from starting time of observation to 1999. And snowfalls are calculated for all stations by using temperature and precipitation in the period of 2000 to 2011. From the statistical analysis of the calculated snowfall, the proper model is selected. The selected models show the correlation coefficients R2 of 0.700 to 0.949 and the adjusted determination coefficients of 41.7% to 89.8%. The applicability of neural network models is superior to other model at almost every station. But in some cases multiple regression models show better results than neural network models due to the lack of observational data during learning period and the extreme peak values which are not learned during forecasting period. According to the study, the results of the models confirm the predicting snowfall depth by using temperature and precipitation is possible and show neural network model is better than the existing statistical models.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국방재학회논문집”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 12일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
11:55 오후