PARTNER
검증된 파트너 제휴사 자료

음소기반의 순환 신경망 음성 검출기를 이용한 음성 향상 (Speech Enhancement using RNN Phoneme based VAD)

5 페이지
기타파일
최초등록일 2025.04.28 최종저작일 2017.05
5P 미리보기
음소기반의 순환 신경망 음성 검출기를 이용한 음성 향상
  • 미리보기

    서지정보

    · 발행기관 : 대한전자공학회
    · 수록지 정보 : 전자공학회논문지 / 54권 / 5호 / 85 ~ 89페이지
    · 저자명 : 이강, 강상익, 권장우, 이상민

    초록

    본 논문에서는 향상된 연산 능력을 가진 하드웨어와 알고리즘의 혼합을 통하여 음성 향상을 위한 정확한 음성 검출기 구현을 목적으로 하였다. 음성은 음소의 나열로 구성되어있으며 음성 모델을 세우는데 적합한 방법은 이전의 정보를 이용하는 순환 신경망 (recurrent neural network, RNN)을 사용하는 것이다. 실제 존재하는 모든 잡음에 대하여 학습한 모델을 제시하는 것은 사실상 불가능 하므로 이를 극복하고자 음소기반 학습을 진행하였다. 학습의 결과로 세워진 모델을 기반으로 새로운 음성 신호에서 음성을 검출하고 그 결과를 이용하여 음성 향상을 진행하였다. 순환 신경망과 음소기반 학습은 프레임 별 높은 상관성을 가진 음성 신호에서 좋은 성능을 얻을 수 있었으며 음성 검출기의 성능을 검증하기 위하여 라벨 데이터와 음성 검출 결과를 비교하고 다양한 잡음 환경에서 객관적 음질 평가를 진행하여 기존의 음성 향상 알고리즘과 비교하였다.

    영어초록

    In this papers, we apply high performance hardware and machine learning algorithm to build an advanced VAD algorithm for speech enhancement. Since speech is made of series of phoneme, using recurrent neural network (RNN) which consider previous data is proper method to build a speech model. It is impossible to study every noise in real world. So our algorithm is builded by phoneme based study. we detect voice present frames in noisy speech signal and make enhancement of the speech signal. Phoneme based RNN model shows advanced performance in speech signal which has high correlation among each frames. To verify the performance of proposed algorithm, we compare VAD result with label data and speech enhancement result in various noise environments with previous speech enhancement algorithm

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“전자공학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 02일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
4:25 오후