PARTNER
검증된 파트너 제휴사 자료

시맨틱 얼굴 변형을 이용한 심층신경망 공격과 강건성 향상 (Semantic Face Transformations for Attacking Deep Neural Networks and Improving Robustness)

6 페이지
기타파일
최초등록일 2025.04.28 최종저작일 2021.07
6P 미리보기
시맨틱 얼굴 변형을 이용한 심층신경망 공격과 강건성 향상
  • 미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회논문지 / 48권 / 7호 / 809 ~ 814페이지
    · 저자명 : 장기림, 김영훈

    초록

    심층신경망은 자율 주행, 얼굴 인식, 물체 탐지 등 다양한 분야에서 널리 쓰이고 있다. 하지만 누군가 악의적인 의도로 심층신경망의 입력을 교란시키면, 잘 학습된 신경망도 오작동 할 수 있다. 일반적인 공격 방법은 이미지의 픽셀 공간에 교란을 추가하여 이미지를 조작한다. 그러나 픽셀 기반의 변형은 쉽게 사람의 눈에 띌 수 있기 때문에 현실적인 효과적 공격은 이미지를 부자연스럽게 변형하여 네트워크를 교란시키는 방법이라 할 수 있다. 본 논문에서는 얼굴 이미지의 부위별 분할을 통해 자연스러운 색감 변형을 이용한 새로운 공격 방법을 제안한다. 시맨틱 얼굴 변형(Semantic face transformation) 기반 이미지를 생성하였으며, 이를 통해 심층신경망 이미지분류의 정확도를 낮출 수 있음을 검증하였다. 또한 우리 방법으로 생성된 변형 이미지를 이용하여, 강건성 훈련한 후 신경망의 강건성을 향상시킬 수 있음을 검증하였다.

    영어초록

    Deep neural networks(DNNs) have achieved great successes in various vision fields such as autonomous driving, face recognition, and object detection. However, a well-trained network can be manipulated if the input of the deep neural networks is disturbed by perturbations. Currently a common attack method is by adding perturbations to the pixel space of images by limiting the Lp-norm of the perturbations. Pixel-based transformations are easily detected by the naked eye so a realistic effective attack can be a method of disturbing the network by unnaturally transforming the image. In this paper, we proposed a new attack method to use natural color transformation through the segmentation of face images. We generated face transformation images based on semantic face transformation and conducted comprehensive experiments to show that using our face transformation reduced the accuracy rate of the classification network. Our face transformation images were also used for robustness training of the neural network. The robustness of the deep neural network was improved.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보과학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 02일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
3:57 오후