PARTNER
검증된 파트너 제휴사 자료

SVM과 인공 신경망을 이용한 침입탐지 효과 비교 연구 (A Comparative Study on the Performance of SVM and an Artificial Neural Network in Intrusion Detection)

9 페이지
기타파일
최초등록일 2025.04.28 최종저작일 2016.02
9P 미리보기
SVM과 인공 신경망을 이용한 침입탐지 효과 비교 연구
  • 미리보기

    서지정보

    · 발행기관 : 한국산학기술학회
    · 수록지 정보 : 한국산학기술학회논문지 / 17권 / 2호 / 703 ~ 711페이지
    · 저자명 : 조성래, 성행남, 안병혁

    초록

    침입탐지시스템은 네트워크 데이터 분석을 통해 네트워크 침입을 탐지하는 역할을 수행하고 침입탐지를 위해 높은 수치의 정확도와 탐지율, 그리고 낮은 수치의 오경보율이 요구된다. 또한 네트워크 데이터 분석을 위해서는 전문가 시스템, 데이터 마이닝, 상태전이 분석(state transition analysis) 등 다양한 기법이 이용된다.
    본 연구의 목적은 데이터 마이닝을 이용한 네트워크 침입탐지기법인 두 기법의 탐지효과를 비교하는데 있다. 첫번째 기법은 기계학습 알고리즘인 SVM이고 두번째 알고리즘은 인공 신경망 모형 중의 하나인 FANN이다. 두 기법의 탐지효과를 비교하기 위해 침입 탐지에 많이 쓰이는 KDD Cup 99 훈련 및 테스트 데이터를 이용하여 탐지의 정확도, 탐지율, 오경보율을 계산하고 비교하였다. 정상적인 데이터를 침입으로 간주하는 오경보율의 경우 SVM보다 FANN이 약간 많은 오경보율을 보이나, 탐지의 정확도 및 침입을 찾아내는 탐지율에서 FANN은 SVM보다 월등한 탐지효과를 보여준다. 정상적인 데이터를 침입으로 간주했을 때의 위험보다는 실제 침입을 정상적인 데이터로 인식할 때의 위험도가 훨씬 큰 것을 감안하면 FANN이 SVM보다 침입탐지에 훨씬 효과적임을 보이고 있다.

    영어초록

    IDS (Intrusion Detection System) is used to detect network attacks through network data analysis. The system requires a high accuracy and detection rate, and low false alarm rate. In addition, the system uses a range of techniques, such as expert system, data mining, and state transition analysis to analyze the network data.
    The purpose of this study was to compare the performance of two data mining methods for detecting network attacks. They are Support Vector Machine (SVM) and a neural network called Forward Additive Neural Network (FANN). The well-known KDD Cup 99 training and test data set were used to compare the performance of the two algorithms. The accuracy, detection rate, and false alarm rate were calculated. The FANN showed a slightly higher false alarm rate than the SVM, but showed a much higher accuracy and detection rate than the SVM. Considering that treating a real attack as a normal message is much riskier than treating a normal message as an attack, it is concluded that the FANN is more effective in intrusion detection than the SVM.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국산학기술학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 02일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
8:21 오후