PARTNER
검증된 파트너 제휴사 자료

문장 독립 화자 인증을 위한 세그멘트 단위 혼합 계층 심층신경망 (Segment unit shuffling layer in deep neural networks for text-independent speaker verification)

7 페이지
기타파일
최초등록일 2025.04.28 최종저작일 2021.03
7P 미리보기
문장 독립 화자 인증을 위한 세그멘트 단위 혼합 계층 심층신경망
  • 미리보기

    서지정보

    · 발행기관 : 한국음향학회
    · 수록지 정보 : 한국음향학회지 / 40권 / 2호 / 148 ~ 154페이지
    · 저자명 : 허정우, 심혜진, 김주호, 유하진

    초록

    문장 독립 화자 인증 연구에서는 일반화 성능 향상을 위해 문장 정보와 독립적인 화자 특징을 추출하는 것이필수적이다. 그렇지만 심층 신경망은 학습 데이터에 의존적이므로, 동일한 시계열 정보를 반복 학습할 경우, 화자 정보를 학습하는 대신 문장 정보에 과적합 될 수 있다. 본 논문에서는 이러한 과적합을 방지하기 위해 시간 축으로 입력층혹은 은닉층을 분할 및 무작위 재배열하여 시계열 정보의 순서를 뒤섞는 세그멘트 단위 혼합 계층을 제안한다. 세그멘트 단위 혼합 계층은 입력층 뿐만 아니라 은닉층에도 적용이 가능하므로, 입력층에서의 일반화 기법에 비해 효과적이라 알려진 은닉층에서의 일반화 기법으로 활용이 가능하며, 기존의 데이터 증강 방법과 동시에 적용할 수도 있다. 뿐만아니라, 세그멘트의 단위 크기를 조절하여 혼합의 정도를 조절할 수도 있다. 본 논문에서는 제안한 방법을 적용하여문장 독립 화자 인증 성능이 개선됨을 확인하였다.

    영어초록

    Text-Independent speaker verification needs to extract text-independent speaker embedding to improve generalization performance. However, deep neural networks that depend on training data have the potential to overfit text information instead of learning the speaker information when repeatedly learning from the identical time series. In this paper, to prevent the overfitting, we propose a segment unit shuffling layer that divides and rearranges the input layer or a hidden layer along the time axis, thus mixes the time series information. Since the segment unit shuffling layer can be applied not only to the input layer but also to the hidden layers, it can be used as generalization technique in the hidden layer, which is known to be effective compared to the generalization technique in the input layer, and can be applied simultaneously with data augmentation. In addition, the degree of distortion can be adjusted by adjusting the unit size of the segment. We observe that the performance of text-independent speaker verification is improved compared to the baseline when the proposed segment unit shuffling layer is applied.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국음향학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 02일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
11:35 오전