• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

FMM 신경망에서 연관도요소를 이용한 규칙 추출 기법 (A Rule Extraction Method Using Relevance Factor for FMM Neural Networks)

6 페이지
기타파일
최초등록일 2025.04.28 최종저작일 2013.05
6P 미리보기
FMM 신경망에서 연관도요소를 이용한 규칙 추출 기법
  • 미리보기

    서지정보

    · 발행기관 : 한국정보처리학회
    · 수록지 정보 : 정보처리학회 논문지 / 2권 / 5호 / 341 ~ 346페이지
    · 저자명 : 이승강, 이재혁, 김호준

    초록

    본 연구에서는 수정된 구조의 FMM 신경망으로부터 패턴 인식을 위한 규칙 추출 방법을 제안한다. 제안된 방법은 학습데이터에서 특징값에 대한 빈도 요소를 반영하는 하이퍼박스 정의를 기반으로 하는데, 이로부터 특징과 패턴클래스 간의 상호 연관도 요소를 정의 하였다. 이는 기존의 모델에서 사용되는 하이퍼박스 중첩테스트 및 축소(contraction) 기법을 사용하지 않아도 하이퍼박스의 중첩에 의한 분류의 모호성을 해결할 수 있게 한다. 본 연구에서는 패턴 클래스의 각 차원별로 퍼지 분할을 기반으로 하는 수정된 하이퍼박스 멤버쉽 함수와 이를 사용하는 학습방법을 제시한다. 제안된 기법으로부터 특정패턴의 분류를 위한 자극성(excitatory) 특징 및 억제성(inhibitory) 특징을 구분하고 이들 정보는 규칙 생성과정에 적용된다. 수화 인식에 관한 실험에 제안된 방법론을 적용함으로써 제안된 이론의 타당성을 실험적으로 고찰하였다.

    영어초록

    In this paper, we propose a rule extraction method using a modified Fuzzy Min-Max (FMM) neural network. The suggested method supplements the hyperbox definition with a frequency factor of feature values in the learning data set. We have defined a relevance factor between features and pattern classes. The proposed model can solve the ambiguity problem without using the overlapping test process and the contraction process. The hyperbox membership function based on the fuzzy partitions is defined for each dimension of a pattern class.
    The weight values are trained by the feature range and the frequency of feature values. The excitatory features and the inhibitory features can be classified by the proposed method and they can be used for the rule generation process. From the experiments of sign language recognition, the proposed method is evaluated empirically.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보처리학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 10일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
10:46 오후