• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

템플릿 재사용을 통한 패러미터 효율적 신경망 네트워크 (Parameter-Efficient Neural Networks Using Template Reuse)

8 페이지
기타파일
최초등록일 2025.04.28 최종저작일 2020.05
8P 미리보기
템플릿 재사용을 통한 패러미터 효율적 신경망 네트워크
  • 미리보기

    서지정보

    · 발행기관 : 한국정보처리학회
    · 수록지 정보 : 정보처리학회 논문지 / 9권 / 5호 / 169 ~ 176페이지
    · 저자명 : 김대연, 강우철

    초록

    최근 심층 신경망 (Deep Neural Networks, DNNs)는 모바일 및 임베디드 디바이스에 인간과 유사한 수준의 인공지능을 제공해 많은 응용에서 혁명을 가져왔다. 하지만, 이러한 DNN의 높은 추론 정확도는 큰 연산량을 요구하며, 따라서 기존의 사용되던 모델을 압축하거나 리소스가 제한적인 디바이스를 위해 작은 풋프린트를 가진 새로운 DNN 구조를 만드는 방법으로 DNN의 연산 오버헤드를 줄이기 위한 많은 노력들이 있어왔다. 이들 중 최근 작은 메모리 풋프린트를 갖는 모델 설계에서 주목받는 기법중 하나는 레이어 간에 패러미터를 공유하는 것이다. 하지만, 기존의 패러미터 공유 기법들은 ResNet과 같이 패러미터에 중복(redundancy)이 높은 것으로 알려진 깊은 심층 신경망에 적용되어왔다. 본 논문은 ShuffleNetV2와 같이 이미 패러미터 사용에 효율적인 구조를 갖는 소형 신경망에 적용할 수 있는 패러미터 공유 방법을 제안한다. 본 논문에서 제안하는 방법은 작은 크기의 템플릿과 레이어에 고유한 작은 패러미터를 결합하여 가중치를 생성한다. ImageNet과 CIFAR-100 데이터셋에 대한 우리의 실험 결과는 ShuffleNetV2의 패러미터를 15%-35% 감소시키면서도 기존의 패러미터 공유 방법과 pruning 방법에 대비 작은 정확도 감소만이 발생한다. 또한 우리는 제안된 방법이 최근의 임베디드 디바이스상에서 응답속도 및 에너지 소모량 측면에서 효율적임을 보여준다.

    영어초록

    Recently, deep neural networks (DNNs) have brought revolutions to many mobile and embedded devices by providing human-level machine intelligence for various applications. However, high inference accuracy of such DNNs comes at high computational costs, and, hence, there have been significant efforts to reduce computational overheads of DNNs either by compressing off-the-shelf models or by designing a new small footprint DNN architecture tailored to resource constrained devices. One notable recent paradigm in designing small footprint DNN models is sharing parameters in several layers. However, in previous approaches, the parameter-sharing techniques have been applied to large deep networks, such as ResNet, that are known to have high redundancy. In this paper, we propose a parameter-sharing method for already parameter-efficient small networks such as ShuffleNetV2. In our approach, small templates are combined with small layer-specific parameters to generate weights. Our experiment results on ImageNet and CIFAR100 datasets show that our approach can reduce the size of parameters by 15%-35% of ShuffleNetV2 while achieving smaller drops in accuracies compared to previous parameter-sharing and pruning approaches. We further show that the proposed approach is efficient in terms of latency and energy consumption on modern embedded devices.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • EasyAI 무료체험
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 10월 11일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
2:31 오후