PARTNER
검증된 파트너 제휴사 자료

신경망 협업 필터링을 이용한 운동 추천시스템 (Exercise Recommendation System Using Deep Neural Collaborative Filtering)

6 페이지
기타파일
최초등록일 2025.04.28 최종저작일 2022.12
6P 미리보기
신경망 협업 필터링을 이용한 운동 추천시스템
  • 미리보기

    서지정보

    · 발행기관 : 한국인터넷방송통신학회
    · 수록지 정보 : 한국인터넷방송통신학회 논문지 / 22권 / 6호 / 173 ~ 178페이지
    · 저자명 : 정우용, 경찬욱, 이승우, 김수현, 선영규, 김진영

    초록

    최근, 소셜 네트워크 서비스에서 딥러닝을 활용한 추천시스템이 활발하게 연구되고 있다. 하지만 딥러닝을 이용한 추천시스템의 경우 콜드스타트 문제와 복잡한 연산으로 인해 늘어난 학습시간이 단점으로 존재한다. 본 논문에서는사용자의 메타데이터를 활용하여 사용자 맞춤형 운동 루틴 추천 알고리즘을 제안한다. 본 논문에서 제안하는 알고리즘은메타데이터(사용자의 키, 몸무게, 성, 등)를 입력받아 설계된 모델에 적용한다. 본 논문에서 제안한 운동 추천시스템 모델은 matrix factorization 알고리즘과 multi-layer perceptron을 활용한 neural collaborative filtering(NCF) 알고리즘을 기반으로 설계된다. 제안된 모델은 사용자 메타데이터와 운동 정보를 입력받아 학습을 진행한다. 학습이 완료된모델은 특정 운동이 입력되면 사용자에게 추천도를 제공한다. 실험 결과에서 제안하는 운동 추천시스템 모델이 기존NCF 모델보다 10% 추천 성능 향상과 50% 학습 시간 단축을 보였다.

    영어초록

    Recently, a recommendation system using deep learning in social network services has been actively studied. However, in the case of a recommendation system using deep learning, the cold start problem and the increased learning time due to the complex computation exist as the disadvantage. In this paper, the user-tailored exercise routine recommendation algorithm is proposed using the user's metadata. Metadata (the user's height, weight, sex, etc.) set as the input of the model is applied to the designed model in the proposed algorithms. The exercise recommendation system model proposed in this paper is designed based on the neural collaborative filtering (NCF) algorithm using multi-layer perceptron and matrix factorization algorithm. The learning proceeds with proposed model by receiving user metadata and exercise information. The model where learning is completed provides recommendation score to the user when a specific exercise is set as the input of the model. As a result of the experiment, the proposed exercise recommendation system model showed 10% improvement in recommended performance and 50% reduction in learning time compared to the existing NCF model.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국인터넷방송통신학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 02일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
9:37 오후