• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

문장 레벨 그래프 회선 신경망을 통한 텍스트 분류 (Text Classification via Sentence-level Graph Convolutional Networks)

5 페이지
기타파일
최초등록일 2025.04.28 최종저작일 2019.08
5P 미리보기
문장 레벨 그래프 회선 신경망을 통한 텍스트 분류
  • 미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회 컴퓨팅의 실제 논문지 / 25권 / 8호 / 397 ~ 401페이지
    · 저자명 : 이민우, 김양훈, 정교민

    초록

    텍스트 분류는 자연어처리 분야의 전통적인 문제이다. 기존의 RNN 및 CNN 기반 텍스트 분류 모델들은 순차적인 단어 구조에 의존하기 때문에 인접하지 않지만 관련성이 높은 단어 간의 관계를 유추하기 어렵다는 문제점이 있다. 반면 GCN(Graph Convolutional Network)은 그래프의 형태로 데이터를 입력받기 때문에 문장의 순차적 구조에 대한 의존도를 줄일 수 있다. 본 논문에서는 문서의 비순차적인 관계를 그래프로 담아내어 더욱 효과적으로 파악하고 분류하는 인공신경망 모델을 제안한다. 문서를 그래프로 표현하기 위해 각 단어를 그래프의 노드로 변환하고, 단어 간의 관계를 계산해 엣지로 정의한다. 최근에 제시된 GCN 구조를 통해 단어 간의 관계가 반영된 단어 벡터를 계산한 뒤, 어텐션 기반 요약 함수를 통해 문단을 주어진 클래스로 분류하는 방법을 제시한다. 실험 결과, 새롭게 제시된 모델이 RNN 및 CNN 기반 텍스트 분류 모델보다 좋은 성능을 보였다.

    영어초록

    Text classification is an important task in natural language processing, and most of the recent approaches employ neural networks to learn and classify the texts. RNN and CNN based models, which are widely used for solving the task, involve reading and processing the text in a sequential manner. This creates inefficiency in learning dependencies between far-apart words. On the contrary, Graph Convolutional Network (GCN) architecture is capable of processing more complex graph-structured data, thus having potential to recognize and learn from complex linguistic structures.
    In the present work, we transform text sequences into graphs by assigning each word in the text as a node and representing the relationship between words as edges. We then propose a method for solving text classification that uses recent GCN architectures to take the transformed text-graph as input, learn hidden representations, and output a single hidden representation for classification. In our experiments, our proposed model outperformed RNN and CNN based models with regards to various text classification tasks.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보과학회 컴퓨팅의 실제 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 12일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
2:39 오전