• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

인공신경망을 활용한 동착강도 예측 (Prediction of Adfreeze Bond Strength Using Artificial Neural Network)

11 페이지
기타파일
최초등록일 2025.04.28 최종저작일 2011.11
11P 미리보기
인공신경망을 활용한 동착강도 예측
  • 미리보기

    서지정보

    · 발행기관 : 한국지반공학회
    · 수록지 정보 : 한국지반공학회논문집 / 27권 / 11호 / 71 ~ 81페이지
    · 저자명 : 고성규, 최창호, 신휴성

    초록

    동착강도는 동토지반 말뚝기초 설계시 지지력을 결정하는 주요 설계정수이다. 동착강도는 동결온도, 구속응력, 말뚝표면 특성, 토사종류 등 다양한 인자들에 의해 동시다발적인 영향을 받는 것으로 보고되고 있다. 하지만 동착강도에 대한 연구는 소수의 인자들만 반영할 수 있는 실험연구를 중심으로 수행되어온 경향이 있으며, 설계정수로서 동착강도를 산정하기 위한 방법들은 동결온도, 말뚝재료 등의 주요 인자들만을 고려할 수 있는 한계가 있어 왔다. 본 연구는 인공신경망 이론을 동착강도 산정에 활용함으로서 다양한 영향인자 조건에서 동착강도를 예측할 수 있는 방안을 모색하기 위한 목적으로 수행되었다. 인공신경망 학습을 위하여 총 5종류의 연구사례로부터 137개의 자료를 수집하였으며, 그 중 100개를 학습자료로, 37개를 실증자료로 구분하였다. 연구결과 단계적 인공신경망 학습을 통하여 동착강도 산정 시 다양한 영향인자를 다차원적으로 고려하여 예측하는 방법이 병행되어야 할 필요성을 확인하였으며, 5개 영향인자를 동시에 고려하여 동착강도를 예측할 수 있는 신뢰성 높은 학습결과를 도출 및 검증하였다. 또한, 매개변수 연구결과 동착강도는 동결온도와 말뚝재료의 변화에 가장 민감하게 반응하는 것으로 나타났고 수직응력에 의한 영향은 일부 온도구간에서만 뚜렷하게 나타나며 토사종류와 재하속도의 변화에 따라 동착강도가 증가하는 경향이 변화하는 특성을 나타내었다.

    영어초록

    Adfreeze bond strength is a primary design parameter, which determines bearing capacity of pile foundation in frozen ground. It is reported that adfreeze bond strength is influenced by various affecting factors like freezing temperature, confining pressure, characteristics of pile surface, soil type, etc. However, several limited researches have been performed to obtain adfreeze bond strength, for past studies considered only few affecting factors such as freezing temperature and type of pile structures. Therefore, there exists a limitation of estimating the design parameter of pile foundation with various factors in frozen ground. In this study, artificial neural network algorithm was involved to predict adfreeze bond strength with various affecting factors. From past five studies, 137 data for various experimental conditions were collected. It was divided by 100 training data and 37 testing data in random manner. Based on the analysis result, it was found that it is necessary to consider various affecting factors for the prediction of adfreeze bond strength and the prediction with artificial neural network algorithm provides enough reliability. In addition, the result of parametric study showed that temperature and pile type are primary affecting factors for adfreeze bond strength. And it was also shown that vertical stress influences only certain temperature zone, and various soil types and loading speeds might cause the change of evolution trend for adfreeze bond strength.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국지반공학회논문집”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 18일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
1:07 오후