• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

제조 시계열 데이터를 위한 진화 연산 기반의 하이브리드 클러스터링 기법 (Evolutionary Computation-based Hybird Clustring Technique for Manufacuring Time Series Data)

8 페이지
기타파일
최초등록일 2025.04.26 최종저작일 2021.09
8P 미리보기
제조 시계열 데이터를 위한 진화 연산 기반의 하이브리드 클러스터링 기법
  • 미리보기

    서지정보

    · 발행기관 : (사)한국스마트미디어학회
    · 수록지 정보 : 스마트미디어저널 / 10권 / 3호 / 23 ~ 30페이지
    · 저자명 : 오상헌, 안창욱

    초록

    제조 시계열 데이터 클러스터링 기법은 제조 대용량 데이터 기반 군집화를 통한 설비 및 공정 이상 탐지 분류를 위한 중요한 솔루션이지만 기존 정적 데이터 대상 클러스터링 기법을 시계열 데이터에 적용함에 있어 낮은 정확도를 가지는 단점이 있다. 본 논문에서는 진화 연산 기반 시계열 군집 분석 접근 방식을 제시하여 기존 클러스터링 기술에 대한 정합성 향상하고자 한다. 이를 위하여 먼저 제조 공정 결과 이미지 형상을 선형 스캐닝을 활용하여 1차원 시계열 데이터로 변환하고 해당 변환 데이터 대상으로 Pearson 거리 매트릭을 기반으로 계층적 군집 분석 및 분할 군집 분석에 대한 최적 하위클러스터를 도출한다. 해당 최적 하위클러스터 대상 유전 알고리즘을 활용하여 유사도가 최소화되는 최적의 군집 조합을 도출한다. 그리고 실제 제조 과정 이미지 대상으로 기존 클러스터링 기법과 성능 비교를 통하여 제안된 클러스터링 기법의 성능 우수성을 검증한다.

    영어초록

    Although the manufacturing time series data clustering technique is an important grouping solution in the field of detecting and improving manufacturing large data-based equipment and process defects, it has a disadvantage of low accuracy when applying the existing static data target clustering technique to time series data. In this paper, an evolutionary computation-based time series cluster analysis approach is presented to improve the coherence of existing clustering techniques. To this end, first, the image shape resulting from the manufacturing process is converted into one-dimensional time series data using linear scanning, and the optimal sub-clusters for hierarchical cluster analysis and split cluster analysis are derived based on the Pearson distance metric as the target of the transformation data. Finally, by using a genetic algorithm, an optimal cluster combination with minimal similarity is derived for the two cluster analysis results. And the performance superiority of the proposed clustering is verified by comparing the performance with the existing clustering technique for the actual manufacturing process image.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 05일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
6:40 오전