• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

클러스터링과 마르코프 랜덤 필드를 이용한 배경 모델링 기법 제안 (Improving Clustering-Based Background Modeling Techniques Using Markov Random Fields)

9 페이지
기타파일
최초등록일 2025.04.26 최종저작일 2011.01
9P 미리보기
클러스터링과 마르코프 랜덤 필드를 이용한 배경 모델링 기법 제안
  • 미리보기

    서지정보

    · 발행기관 : 대한전자공학회
    · 수록지 정보 : 전자공학회논문지 - SP / 48권 / 1호 / 157 ~ 165페이지
    · 저자명 : 한희일, 박수빈

    초록

    본 논문에서는 마르코프 랜덤 필드(Markov random fields: MRF) 기반으로 배경을 모델링하는 방식과 함께 관련 파라미터들을 추정하는 알고리즘을 제안한다. 화소 기반의 배경 모델링 기법은 인근 화소 간의 연관성을 고려하지 않고 화소 단위의시간적 변화에 대한 통계적 특성에 주로 의존하므로 판정 오류를 줄이는데 한계가 있다. 제안 알고리즘은 화소 기반으로 배경모델을 일차적으로 수행한 다음 MRF를 이용하여 시공간적으로 인근한 화소 간의 상호 의존성을 활용하여 배경모델의 정확도를 향상시키는데 그 목적을 두고 있다. MRF는 기본적으로 파라미터의 크기에 매우 민감하므로 기존의 MRF 기반 알고리즘은이미지에 따라 적절한 값을 사전에 구하여 적용하고 있다. 제안한 방식은 초기에 임의의 파라미터로 배경/전경 상태변수를 구한 후에 이의 통계적 특성을 이용하여 파라미터들을 추정하고 추정된 파라미터를 적용하여 상태변수를 재차 구하는 과정을 반복함으로써 최적의 파라미터에 적응적으로 수렴하도록 조정한다. 실내외의 다양한 환경에서 촬영한 비디오를 이용하여 제안한방식 성능을 확인한다.

    영어초록

    It is challenging to detect foreground objects when background includes an illumination variation, shadow or structural variation due to its motion. Basically pixel-based background models including codebook-based modeling suffer from statistical randomness of each pixel. This paper proposes an algorithm that incorporates Markov random field model into pixel-based background modeling to achieve more accurate foreground detection. Under the assumptions the distance between the pixel on the input image and the corresponding background model and the difference between the scene estimates of the spatio-temporally neighboring pixels are exponentially distributed, a recursive approach for estimating the MRF regularizing parameters is proposed. The proposed method alternates between estimating the parameters with the intermediate foreground detection and estimating the foreground detection with the estimated parameters, after computing it with random initial parameters. Extensive experiment is conducted with several videos recorded both indoors and outdoors to compare the proposed method with the standard codebook-based algorithm.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“전자공학회논문지 - SP”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 26일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
11:06 오후